【題目】已知函數(shù) .

(1)在區(qū)間上的極小值等于,求a的值;

(2)令,設是函數(shù)的兩個極值點,若,求的最小值.

【答案】(1);(2)最小值.

【解析】試題分析:1)因為,所以在區(qū)間上單調(diào)遞增,因為,由題意在區(qū)間上有極小值,故,所以,設為在區(qū)間上的極小值點,故,所以,解得方程的根,代入即得的值(2),因為,令,即,兩根分別為,則,又因為

,令,解得,令研究單調(diào)性求最值.

試題解析:

(1)因為,所以在區(qū)間上單調(diào)遞增,

因為,由題意在區(qū)間上有極小值,故,

所以,設為在區(qū)間上的極小值點,

,所以,

,則

所以,即上單調(diào)遞減,易得出,故,

代入,可得,滿足,故.

(2),因為

,即,兩根分別為,則

又因為

,

,由于,所以,又因為,

,即,

所以,解得,即,

所以上單調(diào)遞減,

,所以的最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)),在以坐標原點O為極點,x軸正半軸為極軸的極坐標系中,過極點O的射線與曲線C相交于不同于極點的點A,且點A的極坐標為(2,θ),其中θ.

(1)θ的值;

(2)若射線OA與直線l相交于點B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , 依次成公比為2的等比數(shù)列,且

B. , 依次成公比為2的等比數(shù)列,且

C. , , 依次成公比為的等比數(shù)列,且

D. , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的內(nèi)角AB,C的對邊分別為a,b,c,已知

1)求C;

2)若c=,ABC的面積為,求ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為13,且成績分布在[40100],分數(shù)在80以上(80)的同學獲獎.按文、理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.

(1)a的值,并計算所抽取樣本的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

(2)填寫下面的2×2列聯(lián)表,并判斷能否有超過95%的把握認為“獲獎與學生的文、理科有關”?

文科生

理科生

合計

獲獎

5

不獲獎

合計

200

附表及公式:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856288)

設函數(shù)f(x)=aln xxg(x)=aexx,其中a為正實數(shù).

(Ⅰ)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(2,+∞)上有最小值,求a的取值范圍;

(Ⅱ)若函數(shù)f(x)與g(x)都沒有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車是指企業(yè)的校園,地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務區(qū)等提供自行車單車共享服務,是一種分時租賃模式,某共享單車企業(yè)為更好服務社會,隨機調(diào)查了100人,統(tǒng)計了這100人每日平均騎行共享單車的時間(單位:分鐘),由統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時間在三組對應的人數(shù)依次成等差數(shù)列

(1)求頻率分布直方圖中的值.

(2)若將日平均騎行時間不少于80分鐘的用戶定義為“忠實用戶”,將日平均騎行時間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實用戶”與“潛力用戶”的人中按分層抽樣選出5人,再從這5人中任取3人,求恰好1人為“忠實用戶”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.

(1)求的取值范圍;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,底面為菱形, , 為等邊三角形

(1)求證: ;

(2)若,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案