若p是真命題,q是假命題,以下四個命題:p且q,p或q,非p,非q,其中假命題的個數(shù)是( 。
A、1B、2C、3D、4
考點:復合命題的真假
專題:簡易邏輯
分析:根據(jù)p且q,p或q,非p,非q的真假與p,q真假的關系即可求出假命題的個數(shù).
解答: 解:p是真命題,q是假命題,則:
p且q為假命題,p或q為真命題,非p為假命題,非q為真命題;
所以假命題的個數(shù)為2.
故選B.
點評:考查p且q,p或q,非p,非q真假和p,q真假的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

畫出函數(shù)y=
4(x2+2x+1)2
+
3(x-1)3
的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M=|(x,y)|y=f(x)|,若對任意P1(x1,y1)∈M,均不存在P2(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M為“好集合”,給出下列五個集合:
①M={(x,y)|y=
1
x
 };  
②M={(x,y)|y=lnx};  
③M={(x,y)|y=
1
4
 x2+1};
④M={(x,y)|(x-2)2+y2=1};
其中所有“好集合”的序號是
 
.(寫出所有正確答案的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=2x2+ax+b為偶函數(shù),g(x)=(
3
-1)x+m,h(x)=c(x+1)2(c≠2),關于x的方程f(x)=h(x)有且僅有一根
1
2

(Ⅰ)求a,b,c的值;
(Ⅱ)若對任意的x∈[-1,1],
f(x)
≤g(|x|)恒成立,求實數(shù)m的取值范圍;
(Ⅲ)令φ(x)=
f(x)
+
f(1-x)
,若存在x1,x2∈[0,1]使得|φ(x1)-φ(x2)|≥g(m),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=lnx-2x+a有零點,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:x2+2x-3>0;命題q:
3-x
<1,若“非q且p”為真,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-1-2lnx
(1)求曲線f(x)在點(1,f(x))處的切線方程;
(2)求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式組
x2-x-2>0
2x2+(5+2k)x+5k<0.

(1)當k=0時,求不等式組的解區(qū)間;
(2)若不等式組的整數(shù)解只有一個-2,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于定義域為D的函數(shù)y=f(x),若同時滿足:①f(x)在D內單調遞增或單調遞減;②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b].那么把函數(shù)y=f(x)(x∈D)叫做“同族函數(shù)”.
(1)求“同族函數(shù)”y=x2(x≥0)符合條件②的區(qū)間[a,b].
(2)判斷函數(shù)y=
3x
x+1
(x>-1)是否為“同族函數(shù)”.

查看答案和解析>>

同步練習冊答案