【題目】已知函數 的最小正周期為4π,則( )
A.函數f(x)的圖象關于原點對稱
B.函數f(x)的圖象關于直線 對稱
C.函數f(x)圖象上的所有點向右平移 個單位長度后,所得的圖象關于原點對稱
D.函數f(x)在區(qū)間(0,π)上單調遞增
科目:高中數學 來源: 題型:
【題目】A,B兩組各有7位病人,他們服用某種藥物后的康復時間(單位:天)記錄如下:
A組:10,11,12,13,14,15,16
B組:12,13,15,16,17,14,a
假設所有病人的康復時間互相獨立,從A,B兩組隨機各選1人,A組選出的人記為甲,B組選出的人記為乙.
(Ⅰ)求甲的康復時間不少于14天的概率;
(Ⅱ)如果人康復時間的方差相等?(結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,設邊a,b,c所對的角為A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2 . (Ⅰ)若b+c=5,求b,c的值;
(Ⅱ)若 ,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=eax+λlnx,其中a<0,0<λ< ,e是自然對數的底數
(1)求證:函數f(x)有兩個極值點;
(2)若﹣e≤a<0,求證:函數f(x)有唯一零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數 的最大值為2,它的最小正周期為2π. (Ⅰ)求函數f(x)的解析式;
(Ⅱ)若g(x)=cosxf(x),求g(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分別為邊AC,AB的中點,點F,G分別為線段CD,BE的中點.將△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.點Q為線段A1B上的一點,如圖2.
(Ⅰ)求證:A1F⊥BE;
(Ⅱ)線段A1B上是否存在點Q使得FQ∥平面A1DE?若存在,求出A1Q的長,若不存在,請說明理由;
(Ⅲ)當 時,求直線GQ與平面A1DE所成角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產不同規(guī)格的一種產品,根據檢測標準,其合格產品的質量y(g)與尺寸x(mm)之間近似滿足關系式y(tǒng)=axb(a,b為大于0的常數).現隨機抽取6件合格產品,測得數據如下:
尺寸(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質量(g) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
對數據作了初步處理,相關統(tǒng)計量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)根據所給數據,求y關于x的回歸方程;
(Ⅱ)按照某項指標測定,當產品質量與尺寸的比在區(qū)間( , )內時為優(yōu)等品.現從抽取的6件合格產品中再任選3件,記ξ為取到優(yōu)等品的件數,試求隨機變量ξ的分布列和期望.
附:對于一組數據(v1 , u1),(v2 , u2),…,(vn , un),其回歸直線u=α+βv的斜率和截距的最小二乘估計分別為 = , = ﹣ .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,多面體ABCDE中,AB=AC,平面BCDE⊥平面ABC,BE∥CD,CD⊥BC,BE=1,BC=2,CD=3,M為BC的中點.
(1)若N是棱AE上的動點,求證:DE⊥MN;
(2)若平面ADE與平面ABC所成銳二面角為60°,求棱AB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com