【題目】函數 的最大值為2,它的最小正周期為2π. (Ⅰ)求函數f(x)的解析式;
(Ⅱ)若g(x)=cosxf(x),求g(x)在區(qū)間 上的最大值和最小值.
【答案】解:(Ⅰ)函數 ,
∵f(x)的最小正周期為2π
∴ ,
解得ω=1.
∵f(x)的最大值2,∴A=2.
故得f(x)的解析式為 .
(Ⅱ)由(Ⅰ)可知 =
那么g(x)=cosxf(x)= = =sin(2x+ )
∵x∈ 上時,
可得:
于是,當2x+ = 時,g(x)取得最大值為 ;
當2x+ = 時,g(x)取得最小值為0.
∴g(x)在區(qū)間 上的最大值為 ,最小值為0
【解析】(Ⅰ)根據f(x)最小正周期為2π,求出ω.f(x)的最大值2,所以A=2.可得解析式(Ⅱ)根據g(x)=cosxf(x),求出g(x)的解析式,x∈ 上時,求出內層函數的取值范圍,結合三角函數的圖象和性質,求出f(x)的最大值和最小值.
科目:高中數學 來源: 題型:
【題目】(2015·陜西)設fn(x)是等比數列1,x,x2...,xn的各項和,其中x>0,nN, ,n≥2,
(1)證明:函數Fn(x)=fn(x)-2在(,1)內有且僅有一個零點(記為xn),且xn=+xnn+1;
(2)設有一個與上述等比數列的首項、末項、項數分別相同的等差數列,其各項和為gn(x),比較fn(x)與gn(x)的大小,并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( ) (1.)已知等比數列{an},則“數列{an}單調遞增”是“數列{an}的公比q>1”的充分不必要條件;
(2.)二項式 的展開式按一定次序排列,則無理項互不相鄰的概率是 ;
(3.)已知 ,則 ;
(4.)為了解1000名學生的學習情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為40.
A.(1)(2)
B.(2)(3)
C.(1)(3)
D.(2)(4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數約有66萬,為了了解老人們的健康狀況,政府從老人中隨機抽取600人并委托醫(yī)療機構免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如圖表:
(1)若采用分層抽樣的方法再從樣本中的不能自理的老人中抽取8人進一步了解他們的生活狀況,則兩個群體中各應抽取多少人?
(2)估算該市80歲及以上長者占全市戶籍人口的百分比;
(3)據統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā)放生活補貼,標準如下: ①80歲及以上長者每人每月發(fā)放生活補貼200元;
②80歲以下老人每人每月發(fā)放生活補貼120元;
③不能自理的老人每人每月額外發(fā)放生活補貼100元.試估計政府執(zhí)行此計劃的年度預算.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞) (Ⅰ)求x0的值;
(Ⅱ)若函數f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 的最小正周期為4π,則( )
A.函數f(x)的圖象關于原點對稱
B.函數f(x)的圖象關于直線 對稱
C.函數f(x)圖象上的所有點向右平移 個單位長度后,所得的圖象關于原點對稱
D.函數f(x)在區(qū)間(0,π)上單調遞增
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex+x2﹣x,g(x)=x2+ax+b,a,b∈R. (Ⅰ)當a=1時,求函數F(x)=f(x)﹣g(x)的單調區(qū)間;
(Ⅱ)若曲線y=f(x)在點(0,1)處的切線l與曲線y=g(x)切于點(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 , 滿足| |=2,| |=1,則下列關系可以成立的而是( )
A.( ﹣ )⊥
B.( ﹣ )⊥( + )
C.( + )⊥
D.( + )⊥
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com