【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了130t該農(nóng)產(chǎn)品.以x(單位:t,100≤x≤150)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤(rùn).

(1)將T表示為x的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若x∈[100,110))則取x=105,且x=105的概率等于需求量落入[100,110)的頻率,求T的數(shù)學(xué)期望.

【答案】
(1)解:由題意得,當(dāng)x∈[100,130)時(shí),T=500x﹣300(130﹣x)=800x﹣39000,

當(dāng)x∈[130,150)時(shí),T=500×130=65000,

∴T=


(2)解:由(1)知,利潤(rùn)T不少于57000元,當(dāng)且僅當(dāng)120≤x≤150.

由直方圖知需求量X∈[120,150]的頻率為0.7,

所以下一個(gè)銷售季度的利潤(rùn)T不少于57000元的概率的估計(jì)值為0.7.


(3)解:依題意可得T的分布列如圖,

T

45000

53000

61000

65000

p

0.1

0.2

0.3

0.4

所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.


【解析】(1)由題意先分段寫出,當(dāng)x∈[100,130)時(shí),當(dāng)x∈[130,150)時(shí),和利潤(rùn)值,最后利用分段函數(shù)的形式進(jìn)行綜合即可.(2)由(1)知,利潤(rùn)T不少于57000元,當(dāng)且僅當(dāng)120≤x≤150.再由直方圖知需求量X∈[120,150]的頻率為0.7,利用樣本估計(jì)總體的方法得出下一個(gè)銷售季度的利潤(rùn)T不少于57000元的概率的估計(jì)值.(3)利用利潤(rùn)T的數(shù)學(xué)期望=各組的區(qū)間中點(diǎn)值×該區(qū)間的頻率之和即得.
【考點(diǎn)精析】本題主要考查了頻率分布直方圖和用樣本的頻率分布估計(jì)總體分布的相關(guān)知識(shí)點(diǎn),需要掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;樣本數(shù)據(jù)的頻率分布表和頻率分布直方圖,是通過各小組數(shù)據(jù)在樣本容量中所占比例大小來表示數(shù)據(jù)的分布規(guī)律,它可以讓我們更清楚的看到整個(gè)樣本數(shù)據(jù)的頻率分布情況,并由此估計(jì)總體的分布情況才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是某港口水的深度(單位:)關(guān)于時(shí)間的函數(shù),其中.下表是該港口某一天從時(shí)至時(shí)記錄的時(shí)間與水深的關(guān)系:

t

0

3

6

9

12

15

18

21

24

y

5.0

7.5

5.0

2.5

5.0

7.5

5.0

2.5

5.0

經(jīng)長(zhǎng)期觀察,函數(shù)的圖像可以近似看成函數(shù)的圖像.最能近似表示表中數(shù)據(jù)間對(duì)應(yīng)關(guān)系的函數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于不重合的兩個(gè)平面,給定下列條件:

①存在平面,使得、都垂直于;

②存在平面,使得都平行于;

內(nèi)有不共線的三點(diǎn)到的距離相等;

④存在異面直線,,使得,,

其中,可以判定平行的條件有( )

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),以O為圓心的圓與直線相切.

(1)求圓O的方程.

(2)直線與圓O交于AB兩點(diǎn),在圓O上是否存在一點(diǎn)M,使得四邊形為菱形?若存在,求出此時(shí)直線l的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若為偶函數(shù),求的值并寫出的增區(qū)間;

(Ⅱ)若關(guān)于的不等式的解集為,當(dāng)時(shí),求的最小值;

(Ⅲ)對(duì)任意的,,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ln(x+m)
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間中有如下命題,其中正確的是(

A. 若直線ab共面,直線bc共面,則直線ac共面;

B. 若平面α內(nèi)的任意直線m∥平面β,則平面α∥平面β

C. 若直線a與平面不垂直,則直線a與平面內(nèi)的所有直線都不垂直;

D. 若點(diǎn)P到三角形三條邊的距離相等,則點(diǎn)P在該三角形所在平面內(nèi)的射影是該三角形的內(nèi)心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).

(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)的極坐標(biāo)為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求證:CD⊥AP;
(2)若CD⊥PD,求證:CD∥平面PAB.

查看答案和解析>>

同步練習(xí)冊(cè)答案