精英家教網 > 高中數學 > 題目詳情

一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求摸2次恰好第2次中獎的概率;
(Ⅱ)每次同時摸2個,并放回,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數X的數學期望E(X).

(Ⅰ);(Ⅱ),

解析試題分析:(Ⅰ)利用排列組合、古典概率公式可求;(Ⅱ)按照分布列的取值情況求對應的概率即可.
試題解析:(Ⅰ) 設“摸2次恰好第2次中獎”為事件A,則

所以,摸2次恰好第2次中獎的概率為.            5分
(Ⅱ) 設“每次同時摸2個,恰好中獎”為事件B,則

隨機變量X的所有可能取值為1,2,3,4.                     6分
,        ,
,      , 10分
所以隨機變量X的分布列是

X
1
2
3
4
P




隨機變量X的數學期望.     14分
考點:組合公式、概率,分布列,期望

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

甲、乙兩艘貨輪都要在某個泊位停靠6小時,假定它們在一晝夜的時間段中隨機到達,試求兩船中有一艘在停泊位時,另一艘船必須等待的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在一次聯(lián)考后,某校對甲、乙兩個文科班的數學考試成績進行分析,規(guī)定:大于或等于分為優(yōu)秀,分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部人中隨機抽取人為優(yōu)秀的概率為.

 
 
優(yōu)秀
 
非優(yōu)秀
 
合計
 
甲班
 

 
 
 
 
 
乙班
 
 
 

 
 
 
合計
 
 
 
 
 

 
(1)請完成上面的列聯(lián)表;
(2)根據列聯(lián)表的數據,能否有的把握認為成績與班級有關系?
(3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的名學生從進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數之和為被抽取人的序號,試求抽到號或號的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某企業(yè)招聘工作人員,設置、三組測試項目供參考人員選擇,甲、乙、丙、丁、戊五人參加招聘,其中甲、乙兩人各自獨立參加組測試,丙、丁兩人各自獨立參加組測試.已知甲、乙兩人各自通過測試的概率均為,丙、丁兩人各自通過測試的概率均為.戊參加組測試,組共有6道試題,戊會其中4題.戊只能且必須選擇4題作答,答對3題則競聘成功.
(Ⅰ)求戊競聘成功的概率;
(Ⅱ)求參加組測試通過的人數多于參加組測試通過的人數的概率;
(Ⅲ)記組測試通過的總人數為,求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若盒中裝有同一型號的燈泡共只,其中有只合格品,只次品。
(1) 某工人師傅有放回地連續(xù)從該盒中取燈泡次,每次取一只燈泡,求次取到次品的概率;
(2) 某工人師傅用該盒中的燈泡去更換會議室的一只已壞燈泡,每次從中取一燈泡,若是正品則用它更換已壞燈泡,若是次品則將其報廢(不再放回原盒中),求成功更換會議室的已壞燈泡所用燈泡只數的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩人參加某種選拔測試.在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的5道題.規(guī)定每次考試都從備選的10道題中隨機抽出3道題進行測試,答對一題加10分,答錯一題(不答視為答錯)減5分,得分最低為0分,至少得15分才能入選.
(Ⅰ)求乙得分的分布列和數學期望;
(Ⅱ)求甲、乙兩人中至少有一人入選的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在某校教師趣味投籃比賽中,比賽規(guī)則是:每場投6個球,至少投進4個球且最后2個球都投進者獲獎;否則不獲獎.已知教師甲投進每個球的概率都是.
(Ⅰ)記教師甲在每場的6次投球中投進球的個數為X,求X的分布列及數學期望;
(Ⅱ)求教師甲在一場比賽中獲獎的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了對某課題進行研究,用分層抽樣方法從三所科研單位A、B、C的相關人員中,抽取若干人組成研究小組,有關數據見下表(單位:人):

科研單位
相關人數
抽取人數
A
16

B
12
3
C
8

(1)確定的值;
(2)若從科研單位A、C抽取的人中選2人作專題發(fā)言,求這2人都來自科研單位A的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

隨著經濟的發(fā)展,人們生活水平的提高,中學生的營養(yǎng)與健康問題越來越得到學校與家長的重視. 從學生體檢評價報告單了解到某校3000名學生的體重發(fā)育評價情況,得右表:

 
偏瘦
正常
肥胖
女生(人)
300
865

男生(人)

885

已知從這批學生中隨機抽取1名學生,抽到偏瘦男生的概率為0.15.
(Ⅰ)求的值;
(Ⅱ)若用分層抽樣的方法,從這批學生中隨機抽取60名,問應在肥胖學生中抽出多少名?
(Ⅲ)已知,求肥胖學生中男生不少于女生的概率.

查看答案和解析>>

同步練習冊答案