【題目】已知橢圓C:()的一個(gè)焦點(diǎn)為,點(diǎn)在C上.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)且斜率不為0的直線(xiàn)l與橢圓C相交于M,N兩點(diǎn),橢圓長(zhǎng)軸的兩個(gè)端點(diǎn)分別為,,與相交于點(diǎn)Q,求證:點(diǎn)Q在某條定直線(xiàn)上.
【答案】(1);(2)證明見(jiàn)解析.
【解析】
(1)橢圓C的兩焦點(diǎn)分別為,,由,可求得的值,結(jié)合橢圓的定義,可求得的值,再結(jié)合,可求出的值,進(jìn)而可得到橢圓C的方程;
(2)設(shè)l方程為,聯(lián)立,消去得到關(guān)于的一元二次方程,設(shè),,可表示出、的方程,聯(lián)立兩直線(xiàn)方程,并結(jié)合韋達(dá)定理,可證明點(diǎn)Q在某條定直線(xiàn)上.
(1)依題意,橢圓C的兩焦點(diǎn)分別為,,
則,
所以,即,
又,所以,
故橢圓C的方程為.
(2)設(shè),,l的方程為,
聯(lián)立,得,
設(shè),,則,
故,.
又的方程為,的方程為,
聯(lián)立兩直線(xiàn)方程得,
即,
因?yàn)?/span>,所以,
整理得.
故點(diǎn)Q在定直線(xiàn)上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為我國(guó)數(shù)學(xué)家趙爽約3世紀(jì)初在為《周髀算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則區(qū)域涂色不相同的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,且,橢圓經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)直線(xiàn)過(guò)橢圓右頂點(diǎn),交橢圓于另一點(diǎn),點(diǎn)在直線(xiàn)上,且.若,求直線(xiàn)的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形為直角梯形,,,,,為上一點(diǎn),為的中點(diǎn),且,,現(xiàn)將梯形沿折疊(如圖2),使平面平面.
(1)求證:平面平面.
(2)能否在邊上找到一點(diǎn)(端點(diǎn)除外)使平面與平面所成角的余弦值為?若存在,試確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市環(huán)保部門(mén)對(duì)該市市民進(jìn)行了一次垃圾分類(lèi)知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參與問(wèn)卷調(diào)查的100人的得分(滿(mǎn)分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若規(guī)定問(wèn)卷得分不低于70分的市民稱(chēng)為“環(huán)保關(guān)注者”,請(qǐng)完成答題卡中的列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?
(2)若問(wèn)卷得分不低于80分的人稱(chēng)為“環(huán)保達(dá)人”.視頻率為概率.
①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;
②為了鼓勵(lì)市民關(guān)注環(huán)保,針對(duì)此次的調(diào)查制定了如下獎(jiǎng)勵(lì)方案:“環(huán)保達(dá)人”獲得兩次抽獎(jiǎng)活動(dòng);其他參與的市民獲得一次抽獎(jiǎng)活動(dòng).每次抽獎(jiǎng)獲得紅包的金額和對(duì)應(yīng)的概率.如下表:
紅包金額(單位:元) | 10 | 20 |
概率 |
現(xiàn)某市民要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)大學(xué)先修課程,是在高中開(kāi)設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來(lái)的職業(yè)生涯做好準(zhǔn)備.某高中開(kāi)設(shè)大學(xué)先修課程已有兩年,兩年共招收學(xué)生2000人,其中有300人參與學(xué)習(xí)先修課程,兩年全校共有優(yōu)等生200人,學(xué)習(xí)先修課程的優(yōu)等生有60人.這兩年學(xué)習(xí)先修課程的學(xué)生都參加了考試,并且都參加了某高校的自主招生考試(滿(mǎn)分100分),結(jié)果如下表所示:
分?jǐn)?shù) | |||||
人數(shù) | 20 | 55 | 105 | 70 | 50 |
參加自主招生獲得通過(guò)的概率 | 0.9 | 0.8 | 0.6 | 0.5 | 0.4 |
(1)填寫(xiě)列聯(lián)表,并畫(huà)出列聯(lián)表的等高條形圖,并通過(guò)圖形判斷學(xué)習(xí)先修課程與優(yōu)等生是否有關(guān)系,根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?
優(yōu)等生 | 非優(yōu)等生 | 總計(jì) | |
學(xué)習(xí)大學(xué)先修課程 | |||
沒(méi)有學(xué)習(xí)大學(xué)先修課程 | |||
總計(jì) |
(2)已知今年有150名學(xué)生報(bào)名學(xué)習(xí)大學(xué)先修課程,以前兩年參加大學(xué)先修課程學(xué)習(xí)成績(jī)的頻率作為今年參加大學(xué)先修課程學(xué)習(xí)成績(jī)的概率.
①在今年參與大學(xué)先修課程的學(xué)生中任取一人,求他獲得某高校自主招生通過(guò)的概率;
②設(shè)今年全校參加大學(xué)先修課程的學(xué)生獲得某高校自主招生通過(guò)的人數(shù)為,求.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年10月1日,慶祝中華人民共和國(guó)成立70周年大會(huì)、閱兵式、群眾游行在北京隆重舉行,這次閱兵編59個(gè)方(梯)隊(duì)和聯(lián)合軍樂(lè)團(tuán),總規(guī)模約1.5萬(wàn)人,各型飛機(jī)160余架、裝備580余套,是近幾次閱兵中規(guī)模最大的一次.某機(jī)構(gòu)統(tǒng)計(jì)了觀看此次閱兵的年齡在30歲至80歲之間的100個(gè)觀眾,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求的值及這100個(gè)人的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)用分層抽樣的方法在年齡為、的人中抽取5人,再?gòu)某槿〉?/span>5人中隨機(jī)抽取2人接受采訪(fǎng),求接受采訪(fǎng)的2人中年齡在的恰有1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,分別為雙曲線(xiàn)的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線(xiàn)段的中點(diǎn)Q在C的漸近線(xiàn)上,則C的兩條漸近線(xiàn)方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)為曲線(xiàn)上的動(dòng)點(diǎn),點(diǎn)在線(xiàn)段上,且滿(mǎn)足,求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線(xiàn)上,求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com