【題目】1)證明函數(shù)在區(qū)間上單調(diào)遞增;

2)證明函數(shù)(-π,0)上有且僅有一個極大值點

【答案】1)見解析 2)見解析

【解析】

1)求出函數(shù)導數(shù),根據(jù)導數(shù)正負性判斷單調(diào)性即可證明.

2)根據(jù)(1)已有信息,對函數(shù)進行二次求導,判斷單調(diào)性及函數(shù)的零點,綜合分析,再利用定義域計算函數(shù)值的取值范圍,即可得證.

1)對函數(shù)求導,得,

因為任意的,,且在區(qū)間上,

所以

即函數(shù)在區(qū)間上單調(diào)遞增.

(2)對函數(shù)求導,得

,

,則

時,由(1)知,,則

上單調(diào)遞減

由零點存在定理知:存在唯一的,使得

時,,即,為增函數(shù);

時,,即,為減函數(shù).

又當時,

所以上恒為減函數(shù),

因此有唯一的極大值點

上單調(diào)遞減,

時,

綜上,函數(shù)(-π,0)上有且僅有一個極大值點

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個零點.

1)求實數(shù)的取值范圍;

2)設(shè)、的兩個零點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點與上下頂點構(gòu)成直角三角形,以橢圓E的長軸為直徑的圓與直線相切.

(Ⅰ)求橢圓E的標準方程;

(Ⅱ)為橢圓上不同的三點,為坐標原點,若,試問:的面積是否為定值?若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,,的項,其中,,其前項和為,記除以3余數(shù)為1的數(shù)列,,的個數(shù)構(gòu)成的數(shù)列為,.

1)求的值;

2)求數(shù)列的通項公式,并化簡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的極值;

2)設(shè),對任意都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020210:00時,英國順利“脫歐”.在此之前,英國“脫歐”這件國際大事被社會各界廣泛關(guān)注,英國大選之后,曾預計將會在2020131日完成“脫歐”,但是因為之前“脫歐”一直被延時,所以很多人認為并不能如期完成,某媒體隨機在人群中抽取了100人做調(diào)查,其中40歲以上的55人中有10人認為不能完成,40歲以下的人中認為能完成的占.

1)完成列聯(lián)表,并回答能否有90%的把握認為“預測國際大事的準確率與年齡有關(guān)”?

能完成

不能完成

合計

40歲以上

40歲以下

合計

2)從上述100人中,采用按年齡分層抽樣的方法,抽取20人,從這20人中再選取40歲以下的2人做深度調(diào)査,則2人中恰有1人認為英國能夠完成“脫歐”的概率為多少?

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

參考公式為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a為常數(shù),函數(shù)fx)=xlnxax)有兩個極值點x1,x2x1x2).

1)求a的取值范圍;

2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點.如果函數(shù)存在不動點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,平面

,。分別為線段上的點,且。

(1)證明:平面;

(2)求二面角的余弦值。

查看答案和解析>>

同步練習冊答案