【題目】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過點(diǎn)的直線與橢圓交于兩點(diǎn),且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),且滿足,試問直線的斜率是否為定值,請(qǐng)說明理由.

【答案】(I);(II)為定值.

【解析】試題分析:

(1)利用題意求得,則橢圓的方程為

(2)設(shè)出直線的 斜率,聯(lián)立直線與橢圓的方程可得直線的斜率為定值.

試題解析:

解法一:(Ⅰ)因?yàn)?/span>的面積是的面積的3倍,

所以,即,所以,所以,

則橢圓的方程為

(Ⅱ)當(dāng),則,

設(shè)直線的斜率為,則直線的斜率為

不妨設(shè)點(diǎn)軸上方,,設(shè)

的直線方程為,代入中整理得

,

;

同理

所以,,

,

因此直線的斜率是定值

解法二:(Ⅰ)同解法一.

(Ⅱ)依題意知直線的斜率存在,所以設(shè)方程:代入中整理得

,設(shè),

所以,,

當(dāng),則,不妨設(shè)點(diǎn)軸上方,

所以,整理得,

所以 ,

整理得

,所以

當(dāng)時(shí),直線過定點(diǎn),不合題意;

當(dāng)時(shí),,符合題意,

所以直線的斜率是定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的反函數(shù)為,

(1)求的解析式,并指出的定義域;

(2)判斷的奇偶性,并說明理由;

(3)設(shè),解關(guān)于的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如下表:(單位:人)

立體幾何題

代數(shù)題

總計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?

(2)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為,且答對(duì)的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯(cuò)的學(xué)生中任意抽取兩人對(duì)他們的答題情況進(jìn)行研究,求恰好抽到男女生各一人的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次函數(shù)f(x)=x2+(2t-1)x+1-2t.

(1)求證:對(duì)于任意t∈R,方程f(x)=1必有實(shí)數(shù)根;

(2)若<t<,求證:方程f(x)=0在區(qū)間(-1,0)及內(nèi)各有一個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)為,點(diǎn)為其上一點(diǎn),且

(1)求的值;

(2)如圖,過點(diǎn)作直線交拋物線于兩點(diǎn),求直線、的斜率之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱柱中,,點(diǎn)的中點(diǎn),點(diǎn)在線段上.

)當(dāng)時(shí),求證;

)是否存在點(diǎn),使二面角等于60°?若存在,求的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品展開促銷活動(dòng),對(duì)購(gòu)買該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:

甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示轉(zhuǎn)盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為,邊界忽略不計(jì))即為中獎(jiǎng).

乙商場(chǎng):從裝有4個(gè)白球,4個(gè)紅球和4個(gè)籃球的盒子中一次性摸出3球(這些球初顏色外完全相同),如果摸到的是3個(gè)不同顏色的球,即為中獎(jiǎng).

(Ⅰ)試問:購(gòu)買該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?說明理由;

(Ⅱ)記在乙商場(chǎng)購(gòu)買該商品的顧客摸到籃球的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|-5<x<5},B={x|0≤x<7},:(1)AB;(2)AB;(3)A∪(UB);(4)B∩(UA);(5)(UA)∩(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a﹣(a∈R)

(Ⅰ)判斷函數(shù)f(x)在R上的單調(diào)性,并用單調(diào)函數(shù)的定義證明;

(Ⅱ)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案