【題目】已知函數(shù)f(x)=a﹣(a∈R)

(Ⅰ)判斷函數(shù)f(x)在R上的單調(diào)性,并用單調(diào)函數(shù)的定義證明;

(Ⅱ)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)見(jiàn)解析(2)a=1.

【解析】試題分析:(1)定義域任取兩個(gè)變量x1,x2,并設(shè)x1<x2,作差f(x1)﹣f(x2),差式變形成分式,利用指數(shù)函數(shù)的單調(diào)性判斷正負(fù),進(jìn)而得函數(shù)的單調(diào)性。(2)因?yàn)槎x域?yàn)镽,所以 ,解方程求得 。利用奇函數(shù)定義證明。

試題解析:(1)證明:函數(shù)f(x)的定義域?yàn)镽,對(duì)任意x1,x2∈R,設(shè)x1<x2,

則f(x1)﹣f(x2)==

∵y=2x是R上的增函數(shù),且x1<x2,

∴2x1﹣2x2<0,

∴f(x1)﹣f(x2)<0.

即f(x1)<f(x2),

∴函數(shù)f(x)為R上的增函數(shù);

(2)解:若函數(shù)f(x)為奇函數(shù),

則f(0)=a﹣1=0,

∴a=1.

當(dāng)a=1時(shí),f(x)=1﹣

∴f(﹣x)==﹣f(x),

此時(shí)f(x)為奇函數(shù),滿(mǎn)足題意,

∴a=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線(xiàn)兩側(cè)的動(dòng)點(diǎn),且滿(mǎn)足,試問(wèn)直線(xiàn)的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知橢圓,其中,分別為其左,右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),,且

(1)當(dāng),且時(shí),求的值;

(2)若,試求橢圓離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式組

(1) 若k=1,求不等式組的解集;

(2) 若不等式組的整數(shù)解的集合為{-2},求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).

(Ⅰ)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;

(Ⅱ)當(dāng)車(chē)流密度x為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀(guān)測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且此函數(shù)圖象過(guò)點(diǎn)(1,5)

(1)求實(shí)數(shù)m的值;

(2)判斷函數(shù)f(x)(0,2)上的單調(diào)性?并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)C的參數(shù)方程為 (其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為.

C的普通方程和直線(xiàn)的傾斜角;

設(shè)點(diǎn)(0,2),交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,為正三角形,平面平面,,,.

1)求證:平面平面;

2)求三棱錐的體積;

3)在棱上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置并證明;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案