12.雙曲線x2-4y2=2的虛軸長是$\sqrt{2}$.

分析 求出雙曲線的標(biāo)準(zhǔn)方程,求出b,即可求出雙曲線的虛軸長為2b.

解答 解:雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{\frac{1}{2}}$=1,
則b2=$\frac{1}{2}$,則b=$\frac{\sqrt{2}}{2}$,即虛軸長2b=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$,
故答案為:$\sqrt{2}$,

點評 本題主要考查雙曲線的方程的應(yīng)用,求出雙曲線的標(biāo)準(zhǔn)方程是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\underset{lim}{x→0}$$\frac{sin5x}{2x}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)命題p:?x>0,xex>0,則¬p為( 。
A.?x≤0,xex≤0B.?x0≤0,x0ex0≤0C.?x>0,xex≤0D.?x0>0,x0ex0≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線l:3x-4y+m=0上存在不同的兩點M與N,它們都滿足與兩點A(-1,0),B(1,0)連線的斜率kMA與kMB之積為-1,則實數(shù)m的取值范圍是( 。
A.(-3,3)B.(-4,4)C.(-5,5)D.[-5,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足:a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),數(shù)列{bn}滿足bn+1=(n-2λ)•($\frac{1}{{a}_{n}}$+1)(n∈N*),b1=-λ.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}是單調(diào)遞增數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=$\sqrt{a-{a^x}}$(a>0,a≠1)的定義域和值域都是[0,1],loga$\frac{5}{6}$-${log_{\sqrt{a}}}\sqrt{\frac{5}{48}}$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若集合A={x∈N|5+4x-x2>0},B={y|y=4-x,x∈A},則A∪B等于( 。
A.BB.{1,2,4}C.{1,2,3,4}D.{-1,0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=x2-2bx+b2-1在區(qū)間[0,1]上恰有一個零點,則b的取值范圍是( 。
A.[-1,1]B.[-2,2]C.[-2,-1]∪[0,1]D.[-1,0]∪[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,當(dāng)輸出i的值是4時,輸入≤的整數(shù)n的最大值是( 。
A.22B.23C.24D.25

查看答案和解析>>

同步練習(xí)冊答案