【題目】如圖,四邊形是邊長為2的菱形,平面,為的中點.
(1)求證:平面平面;
(2)若,求三棱錐的體積.
【答案】(1)詳見解析(2)1
【解析】
試題分析:(1)證明面面垂直,一般利用面面垂直判定定理,即從線面垂直出發(fā)給予證明,而題中已知線面垂直平面,因此可借助平行進行轉(zhuǎn)化論證,這往往需利用平幾知識,如本題利用三角形中位線性質(zhì),即得平面(2)求三棱錐體積,關(guān)鍵在于確定高,而高的尋找往往利用線面垂直平面,利用分割法得三棱錐的體積,轉(zhuǎn)化的三個錐的高分別為,最后代入體積公式可得結(jié)果
試題解析:
(1)證明:
如圖, 連接交于點,連接,
∵四邊形是菱形,
∴,
∵為中點,
∴,
∵平面,∴平面,
∵平面,
∴平面平面.................6分
(2)解:∵四邊形是邊長為2的菱形,
∴,
∵平面,
∴,∴,
∵,∴,∴,........................ 9分
.........................................12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱的底面是邊長為的菱形,且,平面,,設(shè)為的中點
(1)求證:平面
(2)點在線段上,且平面,求平面和平面所成銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按元/次收費, 并注冊成為會員, 對會員逐次消費給予相應(yīng)優(yōu)惠,標準如下:
消費次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收費比例 |
該公司從注冊的會員中, 隨機抽取了位進行統(tǒng)計, 得到統(tǒng)計數(shù)據(jù)如下:
消費次第 | 第次 | 第次 | 第次 | 第次 | 第次 |
頻數(shù) |
假設(shè)汽車美容一次, 公司成本為元, 根據(jù)所給數(shù)據(jù), 解答下列問題:
(1)估計該公司一位會員至少消費兩次的概率;
(2)某會員僅消費兩次, 求這兩次消費中, 公司獲得的平均利潤;
(3)設(shè)該公司從至少消費兩次, 求這的顧客消費次數(shù)用分層抽樣方法抽出人, 再從這人中抽出人發(fā)放紀念品, 求抽出人中恰有人消費兩次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中且.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,若存在,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一臺機器由于使用時間較長,生產(chǎn)的零件有一些會有缺損,按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如表所示:
(1)作出散點圖;
(2)如果與線性相關(guān),求出回歸直線方程.
(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么,機器的運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,過右焦點和短軸一個端點的直線的斜率為,為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)斜率為的直線與橢圓相交于兩點,記面積的最大值為,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】葫蘆島市某工廠黨委為了研究手機對年輕職工工作和生活的影響情況做了一項調(diào)查:在廠內(nèi)用簡單隨機抽樣方法抽取了30名25歲至35歲的職工,對其“每十天累計看手機時間”(單位:小時)進行調(diào)查,得到莖葉圖如下.所抽取的男職工“每十天累計看手機時間”的平均值和所抽取的女生 “每十天累計看手機時間”的中位數(shù)分別是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當x∈[0,1]時,f(x)=x,則函數(shù)y=f(x)-log3|x|的零點個數(shù)是( )
A.多于4個 B.4個
C.3個 D.2個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com