【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(II)證明:.

【答案】(Ⅰ)見解析.

(Ⅱ)見解析.

【解析】

)f′(x)==,(x0),對a分類討論即可得出單調(diào)性;

( II)由已知,當(dāng)a=1時,f(x)在(0,1)上單調(diào)遞減,(1,+∞)上單調(diào)遞增,f(x)min=f(1)=0.可得∴ln+﹣10,化簡即可得出.

Ⅰ)解:f′(x)==,(x0),

當(dāng)a0時,f′(x)0,f(x)在(0,+∞)上單調(diào)遞增;

當(dāng)a0時,x(0,a)時,f′(x)0,函數(shù)f(x)單調(diào)遞減;

x(a,+∞)時,f′(x)0,函數(shù)f(x)單調(diào)遞增.

( II)證明:由已知,當(dāng)a=1時,f(x)在(0,1)上單調(diào)遞減,(1,+∞)上單調(diào)遞增,f(x)min=f(1)=0.

ln+﹣10,即ln,也即,

2018

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心為A,直線過點B(1,0)且與軸不重合,交圓ACD兩點,過BAC的平行線交AD于點E.

(Ⅰ)證明:為定值,并寫出點E的軌跡方程;

(Ⅱ)設(shè)點E的軌跡為曲線C1,直線C1M,N兩點,過B且與垂直的直線與C1交于P,Q兩點, 求證:是定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左右焦點分別為,,離心率為.若點為橢圓上一動點,的內(nèi)切圓面積的最大值為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點作斜率為的動直線交橢圓于兩點,的中點為,在軸上是否存在定點,使得對于任意值均有,若存在,求出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù),函數(shù)上單調(diào)遞增,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若四面體的三組對棱分別相等,即,給出下列結(jié)論:

①四面體每組對棱相互垂直;

②四面體每個面的面積相等;

③從四面體每個頂點出發(fā)的三條棱兩兩夾角之和大而小于;

④連接四面體每組對棱中點的線段相互垂直平分.

其中正確結(jié)論的序號是__________. (寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組共有10人,利用假期參加義工活動,已知參加義工活動1次的有2人、2次的有4人、3次的有4人.現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.

(I)設(shè)為事件“選出的2人參加義工活動次數(shù)之和為4”,求事件發(fā)生的概率;

(II)設(shè)為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x),滿足當(dāng)x>0時,f(x)>1,且對任意的x,y,有,f(1)2,.

1)求f(0)的值;

2)求證:對任意x,都有f(x)>0;

3)解不等式f(32x)>4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過兩點,與軸的另一個交點為,頂點為,連結(jié)

1)求該拋物線的表達式;

2)點為該拋物線上的一動點(與點、不重合),設(shè)點的橫坐標(biāo)為.當(dāng)點在直線的下方運動時,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理, 得到下表2

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關(guān)于t的線性回歸方程;

(Ⅱ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

同步練習(xí)冊答案