18.已知數(shù)列{an}的前項和為Sn,且滿足2Sn=1-2an
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=n•an,求證:數(shù)列{bn}的前n項和Tn

分析 (1)利用遞推關系與等比數(shù)列的通項公式即可得出;
(2)利用“錯位相減法”、等比數(shù)列的前n項和公式即可得出.

解答 解:(1)∵2Sn=1-2an,∴n=1設,2a1=1-2a1,解得a1=$\frac{1}{4}$.n≥2時,2an=2(Sn-Sn-1)=(1-2an)-(1-2an-1),化為:${a}_{n}=\frac{1}{2}{a}_{n-1}$,
∴數(shù)列{an}是等比數(shù)列,公比為$\frac{1}{2}$,首項為$\frac{1}{4}$.
∴${a}_{n}=\frac{1}{4}×(\frac{1}{2})^{n-1}$=$\frac{1}{{2}^{n+1}}$.
(2)bn=n•an=$\frac{n}{{2}^{n+1}}$.
∴數(shù)列{bn}的前n項和Tn=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n}{{2}^{n+1}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{3}}+\frac{2}{{2}^{4}}$+…+$\frac{n-1}{{2}^{n+1}}$+$\frac{n}{{2}^{n+2}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n+1}}$-$\frac{n}{{2}^{n+2}}$=$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+2}}$=$\frac{1}{2}$-$\frac{n+2}{{2}^{n+2}}$,
∴Tn=1-$\frac{n+2}{{2}^{n+1}}$.

點評 本題考查了遞推關系、“錯位相減法”、等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.命題“?x≥1,x2≥1”的否定是( 。
A.“?x≥1,x2<1”B.“?x<1,x2≥1”C.“?x0<1,x2≥1”D.“?x0≥1,x2<1”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合A={x|(x-1)(x-2)(x-3)=0},集合B=$\left\{{x|y=\sqrt{x-2}}\right\}$,則集合A∩B真子集的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,四棱錐P-ABCD中,底面ABCD是矩形,AB=2AD,PD⊥底面ABCD,E,F(xiàn)分別為棱AB,PC的中點.
(1)求證:EF∥平面PAD;
(2)求證:平面PDE⊥平面PEC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}的前n項和為Sn,且a1=3,Sn+1-2Sn=1-n.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=$\frac{{2}^{n-1}}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}滿足an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,a1=1,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知數(shù)列{an}滿足[2-(-1)n]an+[2+(-1)n]an+1=1+(-1)n×3n,則a25-a1=300.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設集合A={(m1,m2,m3)|mi∈{-2,0,2},i∈{1,2,3}},則集合A滿足條件:“2≤|m1|+|m2|+|m3|≤5”的元素個數(shù)為18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在數(shù)列{an}中,an=n(sin$\frac{nπ}{2}$+cos$\frac{nπ}{2}$),前n項和為Sn,則S100=0.

查看答案和解析>>

同步練習冊答案