【題目】已知向量,,函數(shù)
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象平移后得到函數(shù)g(x)的圖象,求g(x)在區(qū)間上的最值.
【答案】(Ⅰ)[kπ,kπ],k∈Z.(Ⅱ)最大值為3.最小值為﹣1;
【解析】
(Ⅰ)利用數(shù)量積的坐標(biāo)表示,得到2sinxcosx+2cos2x。利用二倍角公式和輔助角公式將轉(zhuǎn)化為正弦型函數(shù),求出單調(diào)遞減區(qū)間即可.
(Ⅱ)按照要求平移得到g(x)=2sin(2x)+1,由x∈得到2x∈[,π],根據(jù)正弦函數(shù)圖像,得到最大值,最小值即可.
(Ⅰ)∵向量,,
函數(shù)
=2sinxcosx+2cos2x
sin2x+cos2x+1=2sin(2x)+1,
令2kπ2x2kπ,求得kπx≤kπ,
可得函數(shù)f(x)的單調(diào)減區(qū)間為[kπ,kπ],k∈Z.
(Ⅱ)將函數(shù)f(x)=2sin(2x)+1的圖象按平移后得到函數(shù)g(x)的圖象,
可得g(x)=2sin(2x)+1=2sin(2x)+1,
在區(qū)間x∈上,2x∈[0,π],2x∈[,π],
故當(dāng)x=0時(shí),g(x)取得最小值為﹣1;
當(dāng)x時(shí),g(x)取得最大值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長生而言,當(dāng)BMI數(shù)值大于或等于20.5時(shí),我們說體重較重;當(dāng)數(shù)值小于20.5時(shí),我們說體重較輕;身高大于或等于170的我們說身高較高;身高小于170的我們說身高較矮.
(1)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖所示,請(qǐng)根據(jù)所得信息,完成下列列聯(lián)表,并判斷是否有95%的把握認(rèn)為男體育特長生的身高對(duì)指數(shù)有影響;
身高較矮 | 身高較高 | 合計(jì) | |
體重較輕 | |||
體重較重 | |||
合計(jì) |
(2)①從上述32名男體育特長生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如下表所示:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高() | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)率 (保留兩位有效數(shù)字);
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 | 0.1 | 0.3 | 0.9 | -1.5 | -0.5 |
②通過殘差分析,對(duì)于殘差(絕對(duì)值)最大的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤.已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為58(kg).請(qǐng)重新根據(jù)最小二乘法的思想與公式,求出男體育特長生的身高與體重的線性回歸方程.
(參考公式)
,,
,,
().
() | 0.10 | 0.05 | 0.01 | 0.005 |
2.706 | 3.841 | 6.635 | 7.879 |
(參考數(shù)據(jù))
,,,,,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的直線方程.
(1)經(jīng)過點(diǎn)A(-1,-3),且斜率等于直線3x+8y-1=0斜率的2倍;
(2)過點(diǎn)M(0,4),且與兩坐標(biāo)軸圍成三角形的周長為12.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖的折線圖是某超市2018年一月份至五月份的營業(yè)額與成本數(shù)據(jù),根據(jù)該折線圖,下列說法正確的是( )
A.該超市2018年的前五個(gè)月中三月份的利潤最高
B.該超市2018年的前五個(gè)月的利潤一直呈增長趨勢
C.該超市2018年的前五個(gè)月的利潤的中位數(shù)為0.8萬元
D.該超市2018年前五個(gè)月的總利潤為3.5萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為曲線上兩點(diǎn),與的橫坐標(biāo)之和為.
(1)求直線的斜率;
(2)設(shè)弦的中點(diǎn)為,過點(diǎn)、分別作拋物線的切線,則兩切線的交點(diǎn)為,過點(diǎn)作直線,交拋物線于、兩點(diǎn),連接、.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從高三抽出名學(xué)生參加數(shù)學(xué)競賽,由成績得到如下的頻率分布直方圖.試?yán)妙l率分布直方圖求:
(1)這名學(xué)生成績的眾數(shù)與中位數(shù);
(2)這名學(xué)生的平均成績.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《西游記》《三國演義》《水滸傳》和《紅樓夢(mèng)》是中國古典文學(xué)瑰寶,并稱為中國古典小說四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機(jī)調(diào)查了100名學(xué)生,其中閱讀過《西游記》的學(xué)生有70位,只閱讀過《紅樓夢(mèng)》的學(xué)生有20位,則既沒閱讀過《西游記》也沒閱讀過《紅樓夢(mèng)》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計(jì)值為( )
A.0.1B.0.2C.0.3D.0.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了整頓道路交通秩序,某地考慮對(duì)行人闖紅燈進(jìn)行處罰.為了更好地了解市民的態(tài)度,在普通人中隨機(jī)抽取200人進(jìn)行調(diào)查,當(dāng)不處罰時(shí),有80人會(huì)闖紅燈,處罰時(shí),得到如下數(shù)據(jù):
處罰金額(單位:元) | 5 | 10 | 15 | 20 |
會(huì)闖紅燈的人數(shù) | 50 | 40 | 20 | 0 |
若用表中數(shù)據(jù)所得頻率代替概率.
(1)當(dāng)處罰金定為10元時(shí),行人闖紅燈的概率會(huì)比不進(jìn)行處罰降低多少?
(2)將選取的200人中會(huì)闖紅燈的市民分為兩類:類市民在罰金不超過10元時(shí)就會(huì)改正行為;類是其它市民.現(xiàn)對(duì)類與類市民按分層抽樣的方法抽取4人依次進(jìn)行深度問卷,則前兩位均為類市民的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過連接管道全部流到下部容器所需要的時(shí)間稱為該沙漏的一個(gè)沙時(shí).如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長度忽略不計(jì)).假設(shè)該沙漏每秒鐘漏下的沙,且細(xì)沙全部漏入下部后,恰好堆成一個(gè)蓋住沙漏底部的圓錐形沙堆.以下結(jié)論正確的是( )
A.沙漏中的細(xì)沙體積為
B.沙漏的體積是
C.細(xì)沙全部漏入下部后此錐形沙堆的高度約為2.4cm
D.該沙漏的一個(gè)沙時(shí)大約是1985秒()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com