【題目】設(shè)為曲線上兩點,的橫坐標之和為.

1)求直線的斜率;

2)設(shè)弦的中點為,過點、分別作拋物線的切線,則兩切線的交點為,過點作直線,交拋物線于、兩點,連接、.證明:.

【答案】1;(2)證明見解析.

【解析】

1)設(shè)點、,可得出,,,然后利用斜率公式可計算出直線的斜率;

2)利用導(dǎo)數(shù)求出,可證明出,設(shè)直線的方程為,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,求出點的坐標,求出切線方程,可求出點的坐標,設(shè)直線的方程,與拋物線的方程聯(lián)立,利用韋達定理結(jié)合斜率公式求出,即可證得結(jié)論.

1)設(shè)點,可得出,,,

所以,直線的斜率;

2)由(1)知,等價于證明,

設(shè)直線的方程為,聯(lián)立,消去,

由韋達定理得,

對于函數(shù),求導(dǎo)得,

,,

拋物線在點處的切線方程為,整理得,

同理,拋物線在點處的切線的方程為

聯(lián)立方程組,解得,,.

設(shè)、,易知直線的斜率存在,

因為,設(shè)直線的方程為,

代入拋物線,整理得

,.

所以

,

,

,則點,

所以,

所以.

綜上可得,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy下,曲線C1的參數(shù)方程為 為參數(shù)),曲線C1在變換T的作用下變成曲線C2

1)求曲線C2的普通方程;

2)若m>1,求曲線C2與曲線C3y=m|x|-m的公共點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著節(jié)能減排意識深入人心以及共享單車在饒城的大范圍推廣,越來越多的市民在出行時喜歡選擇騎行共享單車。為了研究廣大市民在共享單車上的使用情況,某公司在我市隨機抽取了100名用戶進行調(diào)查,得到如下數(shù)據(jù):

每周使用次數(shù)

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合計

10

8

7

11

14

50

(1)如果認為每周使用超過3次的用戶為“喜歡騎行共享單車”,請完成列表(見答題卡),并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否“喜歡騎行共享單車”與性別有關(guān)?

(2)每周騎行共享單車6次及6次以上的用戶稱為“騎行達人”,視頻率為概率,在我市所有“騎行達人”中,隨機抽取4名用戶.

① 求抽取的4名用戶中,既有男生“騎行達人”又有女“騎行達人”的概率;

②為了鼓勵女性用戶使用共享單車,對抽出的女“騎行達人”每人獎勵500元,記獎勵總金額為,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)滿足:①對任意實數(shù),,都有;②對任意,都有.

(1)求,并證明上的單調(diào)增函數(shù);

(2)若恒成立,求實數(shù)的取值范圍;

(3)已知,方程有三個根,若,求實數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)絡(luò)外賣也開始成為不少人日常生活中不可或缺的一部分市某調(diào)查機構(gòu)針對該市市場占有率最高的兩種網(wǎng)絡(luò)外賣企業(yè)以下簡稱外賣A、外賣的服務(wù)質(zhì)量進行了調(diào)查,從使用過這兩種外賣服務(wù)的市民中隨機抽取了1000人,每人分別對這兩家外賣企業(yè)評分,滿分均為100分,并將分數(shù)分成5組,得到以下頻數(shù)分布表:

分數(shù)

人數(shù)

種類

外賣A

50

150

100

400

300

外賣B

100

100

300

200

300

表中得分越高,說明市民對網(wǎng)絡(luò)外賣服務(wù)越滿意若得分不低于60分,則表明該市民對網(wǎng)絡(luò)外賣服務(wù)質(zhì)量評價較高現(xiàn)將分數(shù)按“服務(wù)質(zhì)量指標”劃分成以下四個檔次:

分數(shù)

服務(wù)質(zhì)量指標

0

1

2

3

視頻率為概率,解決下列問題:

從該市使用過外賣A的市民中任選5人,記對外賣A服務(wù)質(zhì)量評價較高的人數(shù)為X,求X的數(shù)學(xué)期望.

從參與調(diào)查的市民中隨機抽取1人,試求其評分中外賣A的“服務(wù)質(zhì)量指標”與外賣B的“服務(wù)質(zhì)量指標”的差的絕對值等于2的概率;

M市工作的小王決定從外賣A、外賣B這兩種網(wǎng)絡(luò)外賣中選擇一種長期使用,如果從這兩種外賣的“服務(wù)質(zhì)量指標”的期望角度看,他選擇哪種外賣更合適?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,函數(shù)

(Ⅰ)求函數(shù)fx)的單調(diào)遞增區(qū)間;

(Ⅱ)將函數(shù)fx)的圖象平移后得到函數(shù)gx)的圖象,求gx)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線不與坐標軸垂直,且與拋物線有且只有一個公共點.

1)當點的坐標為時,求直線的方程;

2)設(shè)直線軸的交點為,過點且與直線垂直的直線交拋物線,兩點.時,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)fx)滿足fe+x)=fex),且f0)=0,當x∈(0e]時,fx)=lnx已知方程在區(qū)間[e,3e]上所有的實數(shù)根之和為3ea,將函數(shù)的圖象向右平移a個單位長度,得到函數(shù)hx)的圖象,,則h7)=_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面為菱形,,上的點,過的平面分別交,于點,,且平面

(1)證明:;

(2)當的中點,,與平面所成的角為,求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案