【題目】已知定義在上的函數(shù)滿足:①對任意實(shí)數(shù),,都有;②對任意,都有.
(1)求,并證明是上的單調(diào)增函數(shù);
(2)若對恒成立,求實(shí)數(shù)的取值范圍;
(3)已知,方程有三個(gè)根,若,求實(shí)數(shù).
【答案】(1),證明見詳解;(2);(3).
【解析】
(1)對抽象函數(shù)進(jìn)行賦值,令,,即可求得;根據(jù)單調(diào)性的定義,作差,比較大小,定號即可證明;需要注意抽象函數(shù)在作差時(shí)的變形;
(2)利用函數(shù)的單調(diào)性,將問題轉(zhuǎn)化為絕對值不等式恒成立的問題,再利用絕對值三角不等式求得最值,即可得到的取值范圍.
(3)構(gòu)造函數(shù),從而將問題轉(zhuǎn)化為函數(shù)圖像交點(diǎn)的問題,數(shù)形結(jié)合,再利用,即可求解.
(1)令,,則代入條件①,
得:又,則;
設(shè),則
,
因?yàn)槿我?/span>,都有,則,
令,則且,都有,
則對任意都有
則,所以,
所以:是上的單調(diào)增函數(shù).
(2)由條件恒成立;
可化為,
即:,
即對恒成立.
因,
故只需.
解得.
(3)設(shè),顯然,
∴,
方程等價(jià)于
即:,
∵且可改寫為:,
由,
又當(dāng)時(shí),,
∴,畫出函數(shù)圖像如下所示:
于是,∴,
由或,
∵,∴,,,
由已知條件,∴,
即,
又,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足:(常數(shù)),(,).數(shù)列滿足:().
(1)求,的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)是否存在k,使得數(shù)列的每一項(xiàng)均為整數(shù)?若存在,求出k的所有可能值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售某種活海鮮,根據(jù)以往的銷售情況,按日需量(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500]進(jìn)行分組,得到如圖所示的頻率分布直方圖.這種海鮮經(jīng)銷商進(jìn)價(jià)成本為每公斤20元,當(dāng)天進(jìn)貨當(dāng)天以每公斤30元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫.某海鮮產(chǎn)品經(jīng)銷商某天購進(jìn)了300公斤這種海鮮,設(shè)當(dāng)天利潤為元.
(I)求關(guān)于的函數(shù)關(guān)系式;
(II)結(jié)合直方圖估計(jì)利潤不小于800元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的直線方程.
(1)經(jīng)過點(diǎn)A(-1,-3),且斜率等于直線3x+8y-1=0斜率的2倍;
(2)過點(diǎn)M(0,4),且與兩坐標(biāo)軸圍成三角形的周長為12.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計(jì)如下:
每月完成合格產(chǎn)品的件數(shù)(單位:百件) | |||||
頻數(shù) | 10 | 45 | 35 | 6 | 4 |
男員工人數(shù) | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手”與性別有關(guān)?
非“生產(chǎn)能手” | “生產(chǎn)能手” | 合計(jì) | |
男員工 | |||
女員工 | |||
合計(jì) |
(2)為提高員工勞動的積極性,工廠實(shí)行累進(jìn)計(jì)件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計(jì)件單價(jià)為1元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.2元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.3元;超出400件以上的部分,累進(jìn)計(jì)件單價(jià)為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機(jī)選取2人進(jìn)行工資調(diào)查,設(shè)實(shí)得計(jì)件工資(實(shí)得計(jì)件工資=定額計(jì)件工資+超定額計(jì)件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖的折線圖是某超市2018年一月份至五月份的營業(yè)額與成本數(shù)據(jù),根據(jù)該折線圖,下列說法正確的是( )
A.該超市2018年的前五個(gè)月中三月份的利潤最高
B.該超市2018年的前五個(gè)月的利潤一直呈增長趨勢
C.該超市2018年的前五個(gè)月的利潤的中位數(shù)為0.8萬元
D.該超市2018年前五個(gè)月的總利潤為3.5萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為曲線上兩點(diǎn),與的橫坐標(biāo)之和為.
(1)求直線的斜率;
(2)設(shè)弦的中點(diǎn)為,過點(diǎn)、分別作拋物線的切線,則兩切線的交點(diǎn)為,過點(diǎn)作直線,交拋物線于、兩點(diǎn),連接、.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《西游記》《三國演義》《水滸傳》和《紅樓夢》是中國古典文學(xué)瑰寶,并稱為中國古典小說四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機(jī)調(diào)查了100名學(xué)生,其中閱讀過《西游記》的學(xué)生有70位,只閱讀過《紅樓夢》的學(xué)生有20位,則既沒閱讀過《西游記》也沒閱讀過《紅樓夢》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計(jì)值為( )
A.0.1B.0.2C.0.3D.0.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出的普通方程和的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值及此時(shí)的直角坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com