【題目】已知定義在上的函數(shù)滿足:①對任意實(shí)數(shù),都有;②對任意,都有.

(1)求,并證明上的單調(diào)增函數(shù);

(2)若恒成立,求實(shí)數(shù)的取值范圍;

(3)已知,方程有三個(gè)根,若,求實(shí)數(shù).

【答案】1,證明見詳解;(2;(3.

【解析】

1)對抽象函數(shù)進(jìn)行賦值,令,,即可求得;根據(jù)單調(diào)性的定義,作差,比較大小,定號即可證明;需要注意抽象函數(shù)在作差時(shí)的變形;

2)利用函數(shù)的單調(diào)性,將問題轉(zhuǎn)化為絕對值不等式恒成立的問題,再利用絕對值三角不等式求得最值,即可得到的取值范圍.

3)構(gòu)造函數(shù),從而將問題轉(zhuǎn)化為函數(shù)圖像交點(diǎn)的問題,數(shù)形結(jié)合,再利用,即可求解.

(1)令,則代入條件①,

得:,則;

設(shè),則

,

因?yàn)槿我?/span>,都有,則,

,則,都有,

則對任意都有

,所以,

所以:上的單調(diào)增函數(shù).

(2)由條件恒成立;

可化為,

即:

恒成立.

,

故只需.

解得.

(3)設(shè),顯然

,

方程等價(jià)于

即:,

可改寫為:,

,

又當(dāng)時(shí),,

,畫出函數(shù)圖像如下所示:

于是,∴,

,

,∴,

由已知條件,∴,

,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:(常數(shù)),.數(shù)列滿足:.

1)求,的值;

2)求數(shù)列的通項(xiàng)公式;

3)是否存在k,使得數(shù)列的每一項(xiàng)均為整數(shù)?若存在,求出k的所有可能值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售某種活海鮮,根據(jù)以往的銷售情況,按日需量(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500]進(jìn)行分組,得到如圖所示的頻率分布直方圖.這種海鮮經(jīng)銷商進(jìn)價(jià)成本為每公斤20元,當(dāng)天進(jìn)貨當(dāng)天以每公斤30元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫.某海鮮產(chǎn)品經(jīng)銷商某天購進(jìn)了300公斤這種海鮮,設(shè)當(dāng)天利潤為元.

(I)求關(guān)于的函數(shù)關(guān)系式;

(II)結(jié)合直方圖估計(jì)利潤不小于800元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的直線方程.

(1)經(jīng)過點(diǎn)A(-1,-3),且斜率等于直線3x+8y-1=0斜率的2倍;

(2)過點(diǎn)M(0,4),且與兩坐標(biāo)軸圍成三角形的周長為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計(jì)如下:

每月完成合格產(chǎn)品的件數(shù)(單位:百件)

頻數(shù)

10

45

35

6

4

男員工人數(shù)

7

23

18

1

1

(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手”與性別有關(guān)?

非“生產(chǎn)能手”

“生產(chǎn)能手”

合計(jì)

男員工

女員工

合計(jì)

(2)為提高員工勞動的積極性,工廠實(shí)行累進(jìn)計(jì)件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計(jì)件單價(jià)為1元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.2元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.3元;超出400件以上的部分,累進(jìn)計(jì)件單價(jià)為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機(jī)選取2人進(jìn)行工資調(diào)查,設(shè)實(shí)得計(jì)件工資(實(shí)得計(jì)件工資=定額計(jì)件工資+超定額計(jì)件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.

附:,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖的折線圖是某超市2018年一月份至五月份的營業(yè)額與成本數(shù)據(jù),根據(jù)該折線圖,下列說法正確的是( )

A.該超市2018年的前五個(gè)月中三月份的利潤最高

B.該超市2018年的前五個(gè)月的利潤一直呈增長趨勢

C.該超市2018年的前五個(gè)月的利潤的中位數(shù)為0.8萬元

D.該超市2018年前五個(gè)月的總利潤為3.5萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、為曲線上兩點(diǎn),的橫坐標(biāo)之和為.

1)求直線的斜率;

2)設(shè)弦的中點(diǎn)為,過點(diǎn)、分別作拋物線的切線,則兩切線的交點(diǎn)為,過點(diǎn)作直線,交拋物線于兩點(diǎn),連接、.證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《西游記》《三國演義》《水滸傳》和《紅樓夢》是中國古典文學(xué)瑰寶,并稱為中國古典小說四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機(jī)調(diào)查了100名學(xué)生,其中閱讀過《西游記》的學(xué)生有70位,只閱讀過《紅樓夢》的學(xué)生有20位,則既沒閱讀過《西游記》也沒閱讀過《紅樓夢》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計(jì)值為(

A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出的普通方程和的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)上,點(diǎn)上,求的最小值及此時(shí)的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案