(本小題滿分12分).已知圓與直線相切。
(1)求以圓O與y軸的交點(diǎn)為頂點(diǎn),直線在x軸上的截距為半長軸長的橢圓C方程;
(2)已知點(diǎn)A,若直線與橢圓C有兩個不同的交點(diǎn)E,F,且直線AE的斜率與直線
AF的斜率互為相反數(shù);問直線的斜率是否為定值?若是求出這個定值;若不是,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)已知,圓C:,直線:.
(1) 當(dāng)a為何值時,直線與圓C相切;
(2) 當(dāng)直線與圓C相交于A、B兩點(diǎn),且時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)點(diǎn)是圓上的動點(diǎn),過點(diǎn)作圓的兩條切線,切點(diǎn)分別為,切線分別交軸于兩點(diǎn).
(1)求四邊形面積的最小值;
(2)是否存在點(diǎn),使得線段被圓在點(diǎn)處的切線平分?若存在,求出點(diǎn)的縱坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知:以點(diǎn)為圓心的圓與x軸交于
點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn)。
(Ⅰ) 求證:⊿OAB的面積為定值;
(Ⅱ) 設(shè)直線y=-2x+4與圓C交于點(diǎn)M,N,若OM=ON,求圓C的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)是關(guān)于t的方程的兩個不等實(shí)根,則過,兩點(diǎn)的直線與雙曲線的公共點(diǎn)的個數(shù)為( )
A.0 | B.1 | C.2 | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在直角坐標(biāo)系中,以為圓心的圓與直線相切.
(I)求圓的方程;
(II)圓與軸相交于兩點(diǎn),圓內(nèi)的動點(diǎn)使成等比數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知圓C的圓心為原點(diǎn)O,且與直線x+y+=0相切.
(1)求圓C的方程;
(2)點(diǎn)P在直線x=8上,過P點(diǎn)引圓C的兩條切線PA、PB,切點(diǎn)為A、B,求證:直線AB恒過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com