(本小題滿分10分)已知,圓C:,直線:.
(1) 當a為何值時,直線與圓C相切;
(2) 當直線與圓C相交于A、B兩點,且時,求直線的方程.
科目:高中數(shù)學 來源: 題型:解答題
已知圓及點.
(1)在圓上,求線段的長及直線的斜率;
(2)若為圓上任一點,求的最大值和最小值;
(3)若實數(shù)滿足,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓的方程為,過點作直線與圓交于、兩點。
(1)若坐標原點O到直線AB的距離為,求直線AB的方程;
(2)當△的面積最大時,求直線AB的斜率;
(3)如圖所示過點作兩條直線與圓O分別交于R、S,若,且兩角均為正角,試問直線RS的斜率是否為定值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)
設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1、B2,且△AB1B2是面積為的直角三角形.過B1作直線l交橢圓于P、Q兩點.
(1) 求該橢圓的標準方程;
(2) 若,求直線l的方程;
(3) 設直線l與圓O:x2+y2=8相交于M、N兩點,令|MN|的長度為t,若t∈,求△B2PQ的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程是,曲線的參數(shù)方程是
是參數(shù)).
(1)寫出曲線的直角坐標方程和曲線的普通方程;
(2)求的取值范圍,使得,沒有公共點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分10分)已知線段的端點的坐標為,端點在
圓:上運動。
(1)求線段的中點的軌跡方程;
(2)過點的直線與圓有兩個交點,弦的長為,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)在直角坐標系xOy中,曲線C1的點均在C2:(x-5)2+y2=9外,且對C1上任意一點M,M到直線x=﹣2的距離等于該點與圓C2上點的距離的最小值.
(1)求曲線C1的方程;
(2)設P(x0,y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于
點A,B和C,D.證明:當P在直線x=﹣4上運動時,四點A,B,C,D的縱坐標之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)在直角坐標系中,以坐標原點為圓心的圓與直線:相切.
(1)求圓的方程;
(2)若圓上有兩點關于直線對稱,且,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分).已知圓與直線相切。
(1)求以圓O與y軸的交點為頂點,直線在x軸上的截距為半長軸長的橢圓C方程;
(2)已知點A,若直線與橢圓C有兩個不同的交點E,F,且直線AE的斜率與直線
AF的斜率互為相反數(shù);問直線的斜率是否為定值?若是求出這個定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com