10.下列函數(shù)能用二分法求零點的是( 。
A.f(x)=x2B.f(x)=$\sqrt{-{x^2}+1}$C.f(x)=ln(x+2)2D.f(x)=$\frac{1}{{|{{2^x}-3}|}}$

分析 根據(jù)二分法的定義,函數(shù)必須是連續(xù)函數(shù),且函數(shù)在零點兩側(cè)的函數(shù)值異號,從而可得結論.

解答 解:對于A:f(x)=x2≥0恒成立,故不能用二分法求零點,
對于B:f(x)=$\sqrt{-{x^2}+1}$≥0恒成立,故不能用二分法求零點,
對于C,f(x)=ln(x+2)2,f(0)=ln4>0,f(-1)=0,f(-1.5)<ln$\frac{1}{4}$<0,故能用二分法求零點,
對于D:f(x)=$\frac{1}{{|{{2^x}-3}|}}$≥0恒成立,故不能用二分法求零點,
故選:C

點評 本題考查二分法的定義,理解函數(shù)必須是連續(xù)函數(shù),且函數(shù)在零點兩側(cè)的函數(shù)值異號,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.如圖所示,一艘海輪從A處出發(fā),以每小時40海里的速度沿南偏東40°方向直線航行,30分鐘后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B、C兩點間的距離是10$\sqrt{2}$海里.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.等比數(shù)列{an}的前n項的和分別為Sn,S5=2,S10=6,則a16+a17+a18+a19+a20=(  )
A.24B.16C.12D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知冪函數(shù)y=f(x)的圖象過點$(\frac{1}{2},\frac{{\sqrt{2}}}{2})$,則$log_2^{f(4)}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某人玩擲骰子(骰子是一個質(zhì)地均勻的正方體,它的各面上分別標有點數(shù)字1、2、3、4、5、6)的游戲,每輪擲兩次.第n輪擲出的點數(shù)依次為xn,yn.如果$\frac{2}{x_n}+\frac{2}{y_n}<1(n=1,2,…)$,則認為第n輪游戲過關,游戲過關后,則游戲終止.如果某輪游戲不過關,則下一輪繼續(xù)進行,直至過關后終止.
(Ⅰ)求游戲第一輪過關的概率;
(Ⅱ)如果游戲進行到第3輪,第3輪后不管游戲是否過關,都終止游戲.寫出投擲輪數(shù)X的分布列,并求X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.方程${x^2}=\sqrt{x}+3$的解所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知傾斜角為α的直線l與直線m:x-2y+3=0垂直,則cos2α=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知長方體同一個頂點的三條棱長分別為2,3,4,則該長方體的外接球的表面積等于(  )
A.13πB.25πC.29πD.36π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.一貨輪航行到M處,測得燈塔S在貨輪的北偏東15°,與燈塔S相距20海里,隨后貨輪按北偏西30°的方向航行30分鐘到達N處后,又測得燈塔在貨輪的北偏東45°,則貨輪的速度為(  )
A.$20(\sqrt{3}+\sqrt{6})$海里/時B.$20(\sqrt{6}-\sqrt{3})$海里/時C.$20(\sqrt{2}+\sqrt{6})$海里/時D.$20(\sqrt{6}-\sqrt{2})$海里/時

查看答案和解析>>

同步練習冊答案