【題目】某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售.如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理.
(Ⅰ)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(i)假設(shè)花店在這100天內(nèi)每天購進(jìn)17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
(ii)若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.
(命題意圖)本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.
【答案】(Ⅰ)(Ⅱ)
【解析】
試題(1)根據(jù)賣出一枝可得利潤5元,賣不出一枝可得賠本5元,即可建立分段函數(shù);(2)①這100天的日利潤的平均數(shù),利用100天的銷售量除以100即可得到結(jié)論;②當(dāng)天的利潤不少于75元,當(dāng)且僅當(dāng)日需求量不少于16枝,故可求當(dāng)天的利潤不少于75元的概率
試題解析:(1)當(dāng)日需求量n≥17時,利潤y=85.
當(dāng)日需求量n<17時,利潤y=10n-85.
所以y關(guān)于n的函數(shù)解析式為(n∈N).
(2)①這100天中有10天的日利潤為55元,20天的日利潤為65元,
16天的日利潤為75元,54天的日利潤為85元,
所以這100天的日利潤的平均數(shù)為×(55×10+65×20+75×16+85×54)=76.4.
②利潤不低于75元時日需求量不少于16枝,
故當(dāng)天的利潤不少于75元的概率為p=0.16+0.16+0.15+0.13+0.1=0.7.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,點(diǎn)E是棱的中點(diǎn),點(diǎn)F是線段上的一個動點(diǎn).有以下三個命題:
①異面直線與所成的角是定值;
②三棱錐的體積是定值;
③直線與平面所成的角是定值.
其中真命題的個數(shù)是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一世”又叫“一代”.東漢·王充《論衡·宜漢篇》:“且孔子所謂一世,三十年也”,清代·段玉裁《說文解字注》:“三十年為一世,按父子相繼曰世”.而當(dāng)代中國學(xué)者測算“一代”平均為25年.另根據(jù)國際一家研究機(jī)構(gòu)的研究報告顯示,全球家族企業(yè)的平均壽命其實只有26年,約占總量的的家族企業(yè)只能傳到第二代,約占總量的的家族企業(yè)只能傳到第三代,約占總量的家族企業(yè)可以傳到第四代甚至更久遠(yuǎn)(為了研究方便,超過四代的可忽略不計).根據(jù)該研究機(jī)構(gòu)的研究報告,可以估計該機(jī)構(gòu)所認(rèn)為的“一代”大約為( )
A.23年B.22年C.21年D.20年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】波羅尼斯(古希臘數(shù)學(xué)家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(且)的點(diǎn)的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有,,則當(dāng)的面積最大時,AC邊上的高為_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)為,直線經(jīng)過點(diǎn)A.曲線C的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線C的直角坐標(biāo)方程;
(2)過點(diǎn)作直線的垂線交曲線C于D,E兩點(diǎn)(D在x軸上方),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè)函數(shù),.
(1)試討論的單調(diào)性;
(2)設(shè)函數(shù),是否存在實數(shù),使得存在兩個極值點(diǎn),,且滿足?若存在,求的取值范圍;若不存在,請說明理由.
注:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:“今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.” 為了計算每天良馬和駑馬所走的路程之和,設(shè)計框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)在平面直角坐標(biāo)系xOy中,A(﹣2,0),B(0,﹣2),M是曲線C上任意一點(diǎn),求△ABM面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個多面體的直觀圖及三視圖如圖所示,其中M ,N 分別是AF、BC 的中點(diǎn)
(1)求證:MN∥平面CDEF;
(2)求多面體A-CDEF的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com