【題目】一個多面體的直觀圖及三視圖如圖所示,其中M ,N 分別是AF、BC 的中點
(1)求證:MN∥平面CDEF;
(2)求多面體A-CDEF的體積.
【答案】(1)詳見解析;(2).
【解析】
由三視圖可知,該多面體是底面為直角三角形的直三棱柱ADE-BCF,且底面是一個直角三角形,由三視圖中所標(biāo)數(shù)據(jù)易計算出三棱柱中各棱長的值.
(1)取BF的中點G,連接MG、NG,利用中位線的性質(zhì)結(jié)合線面平行的充要條件,易證明結(jié)論
(2)多面體A-CDEF的體積是一個四棱錐,由三視圖易求出棱錐的底面面積和高,進而得到棱錐的體積.
(1)證明:由三視圖知,該多面體是底面為直角三角形的直三棱柱ADE-BCF,且AB=BC=BF=4,DE=CF=,
,連結(jié)BE,M在BE上,連結(jié)CE
EM=BM,CN=BN,所以∥,所以平面
(2)取DE的中點H.
∵AD=AE,∴AH⊥DE,
在直三棱柱ADE-BCF中,
平面ADE⊥平面CDEF,
平面ADE∩平面CDEF=DE.∴AH⊥平面CDEF.
∴多面體A-CDEF是以AH為高,以矩形CDEF為底面的棱錐,在△ADE中,AH=.
S矩形CDEF=DEEF=,
∴棱錐A-CDEF的體積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(i)假設(shè)花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.
(命題意圖)本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校近幾年來通過“書香校園”主題系列活動,倡導(dǎo)學(xué)生整本閱讀紙質(zhì)課外書籍.下面的統(tǒng)計圖是該校2013年至2018年紙質(zhì)書人均閱讀量的情況,根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是( )
A.從2013年到2016年,該校紙質(zhì)書人均閱讀量逐年增長
B.2013年至2018年,該校紙質(zhì)書人均閱讀量的中位數(shù)是46.7本
C.2013年至2018年,該校紙質(zhì)書人均閱讀量的極差是45.3本
D.2013年至2018年,該校后三年紙質(zhì)書人均閱讀量總和是前三年紙質(zhì)書人均閱讀量總和的2倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x2﹣2x+1的圖象與函數(shù)g(x)=3cosπx的圖象所有交點的橫坐標(biāo)之和等于( )
A.2B.4C.6D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓規(guī)是用來畫橢圓的一種器械,它的構(gòu)造如圖所示,在一個十字形的金屬板上有兩條互相垂直的導(dǎo)槽,在直尺上有兩個固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動,在直尺上的點M處用套管裝上鉛筆,使直尺轉(zhuǎn)動一周,則點M的軌跡C是一個橢圓,其中|MA|=2,|MB|=1,如圖,以兩條導(dǎo)槽的交點為原點O,橫槽所在直線為x軸,建立直角坐標(biāo)系.
(1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ(0≤φ<2π),用表示點M的坐標(biāo),并求出C的普通方程;
(2)已知過C的左焦點F,且傾斜角為α(0≤α)的直線l1與C交于D,E兩點,過點F且垂直于l1的直線l2與C交于G,H兩點.當(dāng),|GH|,依次成等差數(shù)列時,求直線l2的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為.
(1)設(shè)橢圓的左右焦點分別為、,點在橢圓上運動,求的值;
(2)設(shè)直線和圓相切,和橢圓交于、兩點,為原點,線段、分別和圓交于、兩點,設(shè)、的面積分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,且,②,且,③,且這三個條件中任選一個,補充在下面問題中,若問題中的存在,求出和數(shù)列的通項公式與前項和;若不存在,請說明理由.
設(shè)為各項均為正數(shù)的數(shù)列的前項和,滿足________,是否存在,使得數(shù)列成為等差數(shù)列?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,右頂點,上頂點為B,左右焦點分別為,且,過點A作斜率為的直線l交橢圓于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)設(shè)P為的中點,是否存在定點Q,對于任意的都有?若存在,求出點Q;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斐波拉契數(shù)列,指的是這樣一個數(shù)列:1,1,2,3,5,8,13,21,…,在數(shù)學(xué)上,斐波拉契數(shù)列{an}定義如下:a1=a2=1,an=an﹣1+an﹣2(n≥3,n∈N),隨著n的增大,越來越逼近黃金分割0.618,故此數(shù)列也稱黃金分割數(shù)列,而以an+1、an為長和寬的長方形稱為“最美長方形”,已知某“最美長方形”的面積約為200平方厘米,則該長方形的長大約是( )
A.20厘米B.19厘米C.18厘米D.17厘米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com