A. | $y=±\sqrt{3}x$ | B. | $y=±\frac{{\sqrt{3}}}{3}x$ | C. | $y=±\frac{1}{3}x$ | D. | y=±3x |
分析 求出橢圓的焦點(diǎn)坐標(biāo),轉(zhuǎn)化求解m,得到雙曲線方程,然后求解雙曲線的漸近線方程.
解答 解:橢圓${x^2}+\frac{y^2}{5}=1$的焦點(diǎn):(0,±2),
雙曲線mx2+y2=1(m∈R)與橢圓${x^2}+\frac{y^2}{5}=1$有相同的焦點(diǎn),
可得-$\frac{1}{m}+1=4$,解得m=-$\frac{1}{3}$,
雙曲線-$\frac{1}{3}$x2+y2=1的漸近線方程為:y=$±\frac{\sqrt{3}}{3}$x.
故選:B.
點(diǎn)評 本題考查橢圓的簡單性質(zhì),雙曲線的簡單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 沿x軸向左平移$\frac{π}{2}$個單位,縱坐標(biāo)伸長為原來的2倍 | |
B. | 沿x軸向右平移$\frac{π}{2}$個單位,縱坐標(biāo)伸長為原來的2倍 | |
C. | 沿x軸向左平移$\frac{π}{4}$個單位,縱坐標(biāo)伸長為原來的2倍 | |
D. | 沿x軸向右平移$\frac{π}{4}$個單位,縱坐標(biāo)伸長為原來的2倍 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
原像 | 1 | 2 | 3 | 4 |
像 | 3 | 4 | 2 | 1 |
原像 | 1 | 2 | 3 | 4 |
像 | 4 | 3 | 1 | 2 |
A. | g[f(3)] | B. | g[f(1)] | C. | f[f(4)] | D. | f[f(3)] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{8\sqrt{2}}}{3}$ | B. | $\frac{{5\sqrt{11}}}{6}$ | C. | $\frac{{\sqrt{462}}}{4}$ | D. | $2\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 002 | B. | 031 | C. | 044 | D. | 060 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{e^2}{8},+∞)$ | B. | $(0,\frac{e^3}{27}]$ | C. | $[\frac{e^3}{27},+∞)$ | D. | $(0,\frac{e^2}{8}]$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com