13.若存在兩個正實(shí)數(shù)x,y,使得等式${x^3}{e^{\frac{y}{x}}}-a{y^3}=0$成立,其中e為自然對數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.$[\frac{e^2}{8},+∞)$B.$(0,\frac{e^3}{27}]$C.$[\frac{e^3}{27},+∞)$D.$(0,\frac{e^2}{8}]$

分析 分離參數(shù),利用換元法轉(zhuǎn)化為方程有解,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和單調(diào)性的關(guān)系進(jìn)行求解即可

解答 解:∵存在兩個正實(shí)數(shù)x,y,使得等式${x^3}{e^{\frac{y}{x}}}-a{y^3}=0$成立,
∴a=$\frac{{e}^{\frac{y}{x}}}{(\frac{y}{x})^{3}}$,
設(shè)$\frac{y}{x}$=t,t>0,則a=$\frac{{e}^{t}}{{t}^{3}}$,
設(shè)f(t)=$\frac{{e}^{t}}{{t}^{3}}$,
則f′(t)=$\frac{{e}^{t}(t-3)}{{t}^{4}}$,
當(dāng)t>3時,f′(t)>0,函數(shù)f(t)單調(diào)遞增,
當(dāng)0<t<3時,f′(t)<0,函數(shù)f(t)單調(diào)遞減,
∴f(t)min=f(3)=$\frac{{e}^{3}}{27}$,
∴a≥$\frac{{e}^{3}}{27}$
故選:C

點(diǎn)評 本題主要考查不等式恒成立問題,利用構(gòu)造法和導(dǎo)數(shù)法求出函數(shù)的極值和最值是解決本題的關(guān)鍵.綜合性較強(qiáng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線mx2+y2=1(m∈R)與橢圓${x^2}+\frac{y^2}{5}=1$有相同的焦點(diǎn),則該雙曲線的漸近線方程為(  )
A.$y=±\sqrt{3}x$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\frac{1}{3}x$D.y=±3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.從二項(xiàng)式(1+x)11的展開式中取一項(xiàng),系數(shù)為奇數(shù)的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.A是曲線ρ=3cosθ上任意一點(diǎn),點(diǎn)A到直線ρcosθ=-1距離的最大值為( 。
A.$\frac{5}{2}$B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)i為虛數(shù)單位,復(fù)數(shù)z滿足$\frac{2i}{z}=1-i$,則復(fù)數(shù)z等于( 。
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四邊形ABCD是正方形,且平面ABCD⊥平面ABEG,F(xiàn)是AG上一點(diǎn),且△ABE與△AEF都是等腰直角三角形,AB=AE,AF=EF.
(1)求證:EF⊥平面BCE;
 (2)設(shè)線段CD,AE的中點(diǎn)分別為P,M,求三棱錐M-BDP和三棱錐F-BCE的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≥6的解集為M.
(Ⅰ) 求M
(Ⅱ) 當(dāng)a,b∈M時,求證:$\sqrt{3}|a+b|<|ab+3|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有16個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,BC=4,AC、AB邊上的中線長之和等于9.
(1)求△ABC重心M的軌跡方程;
(2)求頂點(diǎn)A的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案