A. | $[\frac{e^2}{8},+∞)$ | B. | $(0,\frac{e^3}{27}]$ | C. | $[\frac{e^3}{27},+∞)$ | D. | $(0,\frac{e^2}{8}]$ |
分析 分離參數(shù),利用換元法轉(zhuǎn)化為方程有解,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和單調(diào)性的關(guān)系進(jìn)行求解即可
解答 解:∵存在兩個正實(shí)數(shù)x,y,使得等式${x^3}{e^{\frac{y}{x}}}-a{y^3}=0$成立,
∴a=$\frac{{e}^{\frac{y}{x}}}{(\frac{y}{x})^{3}}$,
設(shè)$\frac{y}{x}$=t,t>0,則a=$\frac{{e}^{t}}{{t}^{3}}$,
設(shè)f(t)=$\frac{{e}^{t}}{{t}^{3}}$,
則f′(t)=$\frac{{e}^{t}(t-3)}{{t}^{4}}$,
當(dāng)t>3時,f′(t)>0,函數(shù)f(t)單調(diào)遞增,
當(dāng)0<t<3時,f′(t)<0,函數(shù)f(t)單調(diào)遞減,
∴f(t)min=f(3)=$\frac{{e}^{3}}{27}$,
∴a≥$\frac{{e}^{3}}{27}$
故選:C
點(diǎn)評 本題主要考查不等式恒成立問題,利用構(gòu)造法和導(dǎo)數(shù)法求出函數(shù)的極值和最值是解決本題的關(guān)鍵.綜合性較強(qiáng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=±\sqrt{3}x$ | B. | $y=±\frac{{\sqrt{3}}}{3}x$ | C. | $y=±\frac{1}{3}x$ | D. | y=±3x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1-i | B. | 1-i | C. | -1+i | D. | 1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com