【題目】如圖所示的幾何體ABCDE中,平面EAB,,,,MEC的中點(diǎn).

求異面直線DMBE所成角的大;

求二面角的余弦值.

【答案】(1);(2).

【解析】

由題意,先證明直線AE、ABAD兩兩垂直,再以點(diǎn)A為原點(diǎn),AE、ABAD所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,

求出向量,然后求出異面直線DMBE所成的角;

求出平面BDM和平面BDA的法向量,再求二面角的余弦值.

平面EAB,

平面平面EAB,

,且平面平面,

平面ABCD,

直線AEAB、AD兩兩垂直,

以點(diǎn)A為原點(diǎn),AE、ABAD所在直線分別為x軸、y軸、z軸建立如圖所示的空間直角坐標(biāo)系,

設(shè),

0,4,,4,,0,,0,,

EC的中點(diǎn),

2,

,

,

異面直線DMBE所成角的大小為

設(shè)二面角的大小為,

,,

設(shè)平面BDM的一個(gè)法向量,

,,

所以,,

,,

平面BDM的一個(gè)法向量,平面BDA的一個(gè)法向量

,

由圖可知,為銳角,

二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體,平面,四邊形為正方形,四邊形為梯形,且,,,.

(1)求直線與平面所成角的正弦值;

(2)線段上是否存在點(diǎn),使得直線平面?若存在,求的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某儀器經(jīng)過檢驗(yàn)合格才能出廠,初檢合格率為:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對其進(jìn)行檢驗(yàn);若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項(xiàng)費(fèi)用如表:

項(xiàng)目

生產(chǎn)成本

檢驗(yàn)費(fèi)/次

調(diào)試費(fèi)

出廠價(jià)

金額(元)

1000

100

200

3000

(Ⅰ)求每臺儀器能出廠的概率;

(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價(jià)生產(chǎn)成本檢驗(yàn)費(fèi)調(diào)試費(fèi));

(Ⅲ)假設(shè)每臺儀器是否合格相互獨(dú)立,記為生產(chǎn)兩臺儀器所獲得的利潤,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出三個(gè)命題:①直線上有兩點(diǎn)到平面的距離相等,則直線平行平面;②夾在兩平行平面間的異面直線段的中點(diǎn)的連線平行于這個(gè)平面;③過空間一點(diǎn)必有唯一的平面與兩異面直線平行.正確的是( )

A. ②③B. ①②C. ①②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)為橢圓上任意一點(diǎn),關(guān)于原點(diǎn)的對稱點(diǎn)為,有,且的最大值.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若關(guān)于軸的對稱點(diǎn),設(shè)點(diǎn),連接與橢圓相交于點(diǎn),問直線軸是否交于一定點(diǎn).如果是,求出該定點(diǎn)坐標(biāo);如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上所有點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的,得到曲線,在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程及直線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)為曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣a)2+4.

(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;

(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,DE分別為BC,AC的中點(diǎn),AB=BC

求證:(1A1B1∥平面DEC1;

2BEC1E

查看答案和解析>>

同步練習(xí)冊答案