【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標(biāo)原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
若射線l:與曲線,的交點分別為A,B異于原點,求的取值范圍.
【答案】(1);(2)
【解析】
(1)根據(jù)參數(shù)方程與直角坐標(biāo)方程、直角坐標(biāo)與極坐標(biāo)方程間的轉(zhuǎn)化關(guān)系,即可化出相應(yīng)的方程。
(2)根據(jù)傾斜角及參數(shù)方程和極坐標(biāo)關(guān)系,用α表示出與的長度,進而將轉(zhuǎn)化為關(guān)于α的式子,根據(jù)α的范圍即可求得的范圍。
曲線的參數(shù)方程為,為參數(shù),
轉(zhuǎn)換為直角坐標(biāo)方程為,
曲線的極坐標(biāo)方程為,
曲線的極坐標(biāo)方程為.
轉(zhuǎn)換為直角坐標(biāo)方程為.
射線l:的傾斜角,由,
得,
由,
得,
所以.
由,所以,
故的取值范圍為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記無窮數(shù)列的前n項中最大值為,最小值為,令,數(shù)列的前n項和為,數(shù)列的前n項和為.
(1)若數(shù)列是首項為2,公比為2的等比數(shù)列,求;
(2)若數(shù)列是等差數(shù)列,試問數(shù)列是否也一定是等差數(shù)列?若是,請證明;若不是,請舉例說明;
(3)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點為,離心率為,點在橢圓上,且的面積的最大值為.
(1)求橢圓的方程;
(2)已知直線與橢圓交于不同的兩點,若在軸上存在點,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,點的極坐標(biāo)為,以極點為極點,以軸正半軸為極軸建立極坐標(biāo)系.
(1)曲線的直角坐標(biāo)方程和點的直角坐標(biāo);
(2)若過點且傾斜角為的直線,點為曲線上任意一點,求點到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運動會將在深圳舉行,組委會招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位:),身高在以上(包括)定義為“高個子”,身高在以下(不包括)定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率;
(2)若從身高以上(包括)的志愿者中選出男、女各一人,設(shè)這2人身高相差(),求的分布列和數(shù)學(xué)期望(均值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機構(gòu)隨機調(diào)查了,兩個企業(yè)各100名員工,得到了企業(yè)員工月均收入的頻數(shù)分布表以及企業(yè)員工月均收入的統(tǒng)計圖如下:
企業(yè):
工資 | 人數(shù) |
5 | |
10 | |
20 | |
42 | |
18 | |
3 | |
1 | |
1 |
企業(yè):
(1)若將頻率視為概率,現(xiàn)從企業(yè)中隨機抽取一名員工,求該員工月均收入不低于5000元的概率;
(2)(i)若從企業(yè)的月均收入在員工中,按分層抽樣的方式抽取7人,而后在此7人中隨機抽取2人,則2人月均收入都不在的概率是多少?
(ii)若你是一名即將就業(yè)的大學(xué)生,根據(jù)上述調(diào)查結(jié)果,并結(jié)合統(tǒng)計學(xué)相關(guān)知識,你會選擇去哪個企業(yè)就業(yè),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的展開式中第5項與第7項的二項數(shù)系數(shù)相等,且展開式的各項系數(shù)之和為1024,則下列說法正確的是( )
A.展開式中奇數(shù)項的二項式系數(shù)和為256
B.展開式中第6項的系數(shù)最大
C.展開式中存在常數(shù)項
D.展開式中含項的系數(shù)為45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)高等數(shù)學(xué)這學(xué)期分別用兩種不同的數(shù)學(xué)方式試驗甲、乙兩個大一新班(人數(shù)均為人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機抽取甲、乙兩班各名的高等數(shù)學(xué)期末考試成績,得到莖葉圖:
(1)學(xué)校規(guī)定:成績不得低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷“能否在犯錯誤率的概率不超過0.025的前提下認(rèn)為成績優(yōu)異與教學(xué)方式有關(guān)?”
下面臨界值表僅供參考:
(參考方式:,其中)
(2)現(xiàn)從甲班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機抽取兩名同學(xué),求成績?yōu)?6分的同學(xué)至少有一個被抽中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com