6.已知全集U={x∈N|x≤5},若A={x∈N|2x-5<0},則∁UA=( 。
A.{3,4}B.{3,4,5}C.{2,3,4,5}D.{4,5}

分析 先求出集合U和A,由此利用補(bǔ)集定義能求出∁UA.

解答 解:∵全集U={x∈N|x≤5}={0,1,2,3,4,5},
A={x∈N|2x-5<0}={0,1,2},
∴∁UA={3,4,5}.
故選:B.

點(diǎn)評(píng) 本題考查補(bǔ)集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意補(bǔ)集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=120°,AB=PC=2,$AP=BP=\sqrt{2}$.
(Ⅰ)線段AB上是否存在點(diǎn)M,使AB⊥平面PCM?并給出證明.
(Ⅱ)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在五棱錐P-ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點(diǎn),點(diǎn)P在底面的射影落在線段AG上.
(Ⅰ)求證:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC=$\sqrt{3}$,側(cè)棱PA與底面ABCDE所成角為45°,S△PBE=$\sqrt{3}$,點(diǎn)M在側(cè)棱PC上,CM=2MP,求二面角M-AB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知x=${e}^{\frac{1}{6}}$(e為自然對(duì)數(shù)的底數(shù)),y=log52,z=log43,則下列結(jié)論正確的是(  )
A.x<y<zB.y<z<xC.z<y<xD.z<x<y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}是等比數(shù)列,其公比為2,設(shè)bn=log2an,且數(shù)列{bn}的前10項(xiàng)的和為25,那么$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{10}}$的值為$\frac{1023}{128}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知點(diǎn)A(a,0),點(diǎn)P是雙曲線C:$\frac{{x}^{2}}{4}$-y2=1右支上任意一點(diǎn),若|PA|的最小值為3,則滿足條件的A點(diǎn)個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若復(fù)數(shù)z滿足z(1-i)=2i(i是虛數(shù)單位),$\overline{z}$是z的共軛復(fù)數(shù),則$\overline{z}$=-1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=2sin(2x-$\frac{π}{3}$)的圖象關(guān)于直線x=x0對(duì)稱,則|x0|的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.執(zhí)行如圖所示的程序框圖,當(dāng)輸入的x為2017時(shí),輸出的y=4

查看答案和解析>>

同步練習(xí)冊(cè)答案