11.已知點(diǎn)A(a,0),點(diǎn)P是雙曲線C:$\frac{{x}^{2}}{4}$-y2=1右支上任意一點(diǎn),若|PA|的最小值為3,則滿足條件的A點(diǎn)個(gè)數(shù)是(  )
A.0B.1C.2D.3

分析 根據(jù)雙曲線的性質(zhì)即可求出.

解答 解:點(diǎn)A(a,0)在x軸上,
點(diǎn)P是雙曲線C:$\frac{{x}^{2}}{4}$-y2=1右支上任意一點(diǎn),|PA|的最小值為3,
點(diǎn)P是雙曲線的右頂點(diǎn),故a的值有2個(gè),
故選:C.

點(diǎn)評(píng) 本題考查了雙曲線的簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且log3a1+log3a3+log3a5+…+log3a19=10,則a10的值為( 。
A.3B.6C.9D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知復(fù)數(shù)z=$\frac{2-i}{1+i}$(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若實(shí)數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{3x-y-2≥0}\\{x-2y+1≤0}\\{2x+y-8≤0}\end{array}\right.$,則z=4x+y的最大值為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知全集U={x∈N|x≤5},若A={x∈N|2x-5<0},則∁UA=( 。
A.{3,4}B.{3,4,5}C.{2,3,4,5}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=lnx+$\frac{1}{2}$ax2-x-m(m∈Z).
(Ⅰ)若f(x)是增函數(shù),求a的取值范圍;
(Ⅱ)若a<0,且f(x)<0恒成立,求m最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在平面直角坐標(biāo)系xOy中,拋物線y2=6x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足.若直線AF的斜率k=-$\sqrt{3}$,則線段PF的長(zhǎng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長(zhǎng)為2的正三角形,且與底面垂直,底面ABCD是菱形,且∠ABC=60°,M為PC的中點(diǎn).
(Ⅰ)在棱PB上是否存在一點(diǎn)Q,使用A,Q,M,D四點(diǎn)共面?若存在,指出點(diǎn)Q的位置并證明;若不存在,請(qǐng)說(shuō)明理由.
(Ⅱ)求點(diǎn)D到平面PAM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知{an}是公差不為零的等差數(shù)列,Sn為其前n項(xiàng)和,S3=9,并且a2,a5,a14成等比數(shù)列,數(shù)列{bn}的前n項(xiàng)和為T(mén)n=$\frac{{3}^{n+1}-3}{2}$.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=$\frac{{a}_{n}^{2}+8lo{g}_{3}_{n}}{{a}_{n+1}_{n}}$,求數(shù)列{cn}的前n項(xiàng)和M.

查看答案和解析>>

同步練習(xí)冊(cè)答案