分析 (1)列方程組計(jì)算a1和公差d,得出an,利用bn+1=Tn+1-Tn得出bn+1,從而得出bn;
(2)化簡cn,使用錯位相減法計(jì)算Mn.
解答 解:(1)設(shè){an}的公差為d,
∵S3=9,并且a2,a5,a14成等比數(shù)列,
∴$\left\{\begin{array}{l}{{3a}_{1}+3d=9}\\{({a}_{1}+4d)^{2}=({a}_{1}+d)({a}_{1}+13d)}\end{array}\right.$,解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
∵Tn=$\frac{{3}^{n+1}-3}{2}$=$\frac{3}{2}$(3n-1),∴Tn+1=$\frac{3}{2}$(3n+1-1),
∴bn+1=Tn+1-Tn=$\frac{3}{2}$(3n+1-3n)=3•3n=3n+1.
∴bn=3n.
(2)cn=$\frac{{a}_{n}^{2}+8lo{g}_{3}_{n}}{{a}_{n+1}_{n}}$=$\frac{(2n-1)^{2}+8n}{(2n+1)•{3}^{n}}$=$\frac{(2n+1)^{2}}{(2n+1)•{3}^{n}}$=$\frac{2n+1}{{3}^{n}}$,
∴Mn=$\frac{3}{3}$+$\frac{5}{{3}^{2}}+\frac{7}{{3}^{3}}$+…+$\frac{2n+1}{{3}^{n}}$,①
∴$\frac{1}{3}$Mn=$\frac{3}{{3}^{2}}$+$\frac{5}{{3}^{3}}$+$\frac{7}{{3}^{4}}$+…+$\frac{2n+1}{{3}^{n+1}}$,②
①-②得:$\frac{2}{3}$Mn=1+$\frac{2}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+$\frac{2}{{3}^{4}}$+…+$\frac{2}{{3}^{n}}$-$\frac{2n+1}{{3}^{n+1}}$=1+$\frac{\frac{4}{9}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-$\frac{2n+1}{{3}^{n+1}}$=$\frac{5}{3}$-$\frac{2n+7}{{3}^{n+1}}$,
∴Mn=$\frac{5}{2}$-$\frac{2n+7}{2•{3}^{n}}$.
點(diǎn)評 本題考查了等差數(shù)列,等比數(shù)列的通項(xiàng)公式,求和公式,錯位相減法求和,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 8 | C. | 4 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-$\sqrt{3}$i | B. | $\sqrt{3}$-i | C. | $\sqrt{3}$+i | D. | 1+$\sqrt{3}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
男 | 女 | 合計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
合計(jì) | 60 | 50 | 110 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A. | 在犯錯的概率不超過0.1%的前提下,認(rèn)為“愛好該運(yùn)動與性別無關(guān)” | |
B. | 在犯錯的概率不超過0.1%的前提下,認(rèn)為“愛好該運(yùn)動與性別有關(guān)” | |
C. | 有99%以上的把握認(rèn)為“愛好該運(yùn)動與性別有關(guān)” | |
D. | 有99%以上的把握認(rèn)為“愛好該運(yùn)動與性別無關(guān)” |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com