【題目】某市農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至124日的每天晝夜溫度與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

121

122

123

124

溫差

11

13

12

8

發(fā)芽數(shù)(顆)

26

32

26

17

根據(jù)表中121日至123日的數(shù)據(jù),求得線性回歸方程中的,則求得的_____;若用124日的數(shù)據(jù)進(jìn)行檢驗,檢驗方法如下:先用求得的線性回歸方程計算發(fā)芽數(shù),再求與實際發(fā)芽數(shù)的差,若差值的絕對值不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,則求得的線性回歸方程_____(填可靠不可靠).

【答案】3 可靠

【解析】

先求得樣本中心點,即可求得;根據(jù)求得的回歸方程,即可容易求得124日的估計值,根據(jù)題意,即可判斷是否可靠.

由題得,

所以樣本中心點為(12,28),所以,所以

因為,所以124日的估計值為,

,沒有超過2,所以求得的線性回歸方程可靠.

故答案為:;可靠.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】總體由編號為01,02,...39,4040個個體組成.利用下面的隨機(jī)數(shù)表選取5個個體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為(

A.23B.21C.35D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從秦朝統(tǒng)一全國幣制到清朝末年,圓形方孔銅錢(簡稱孔方兄是我國使用時間長達(dá)兩千多年的貨幣.如圖1,這是一枚清朝同治年間的銅錢,其邊框是由大小不等的兩同心圓圍成的,內(nèi)嵌正方形孔的中心與同心圓圓心重合,正方形外部,圓框內(nèi)部刻有四個字同治重寶.某模具廠計劃仿制這樣的銅錢作為紀(jì)念品,其小圓內(nèi)部圖紙設(shè)計如圖2所示,小圓直徑1厘米,內(nèi)嵌一個大正方形孔,四周是四個全等的小正方形(邊長比孔的邊長小),每個正方形有兩個頂點在圓周上,另兩個頂點在孔邊上,四個小正方形內(nèi)用于刻銅錢上的字.設(shè),五個正方形的面積和為

1)求面積關(guān)于的函數(shù)表達(dá)式,并求的范圍;

2)求面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為2,E,F,G分別為,的中點,則(

A.直線與直線垂直

B.直線與平面不平行

C.平面截正方體所得的截面面積為

D.C與點G到平面的距離相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)歷年大學(xué)生就業(yè)統(tǒng)計資料顯示:某大學(xué)理工學(xué)院學(xué)生的就業(yè)去向涉及公務(wù)員、教師、金融、公司和自主創(chuàng)業(yè)等五大行業(yè)2020屆該學(xué)院有數(shù)學(xué)與應(yīng)用數(shù)學(xué)、計算機(jī)科學(xué)與技術(shù)和金融工程等三個本科專業(yè),畢業(yè)生人數(shù)分別是70人,140人和210人現(xiàn)采用.分層抽樣的方法,從該學(xué)院畢業(yè)生中抽取18人調(diào)查學(xué)生的就業(yè)意向.

1)應(yīng)從該學(xué)院三個專業(yè)的畢業(yè)生中分別抽取多少人?

2)國家鼓勵大學(xué)生自主創(chuàng)業(yè),在抽取的18人中,就業(yè)意向恰有三個行業(yè)的學(xué)生有5人為方便統(tǒng)計,將恰有三個行業(yè)就業(yè)意向的這5名學(xué)生分別記為、、、、,統(tǒng)計如下表:

公務(wù)員

×

×

教師

×

×

金融

×

公式

×

×

自主創(chuàng)業(yè)

×

×

其中“○”表示有該行業(yè)就業(yè)意向,“×”表示無該行業(yè)就業(yè)意向.

現(xiàn)從、、5人中隨機(jī)抽取2人接受采訪.設(shè)為事件“抽取的2人中至少有一人有自主創(chuàng)業(yè)意向”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,點是邊上一點,且,點的中點,將沿著折起,使點運動到點處,且滿足.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某部隊在一次軍演中要先后執(zhí)行六項不同的任務(wù),要求是:任務(wù)A必須排在前三項執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有( )

A. 36種B. 44種C. 48種D. 54種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)設(shè),若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,且的范圍是,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雷達(dá)圖(Radar Chart),又可稱為戴布拉圖、蜘蛛網(wǎng)圖(Spider Chart),原先是財務(wù)分析報表的一種,現(xiàn)可用于對研究對象的多維分析.圖為甲、乙兩人在五個方面的評價值的雷達(dá)圖,則下列說法不正確的是(

A.甲、乙兩人在次要能力方面的表現(xiàn)基本相同

B.甲在溝通、服務(wù)、銷售三個方面的表現(xiàn)優(yōu)于乙

C.在培訓(xùn)與銷售兩個方面上,甲的綜合表現(xiàn)優(yōu)于乙

D.甲在這五個方面的綜合表現(xiàn)優(yōu)于乙

查看答案和解析>>

同步練習(xí)冊答案