【題目】已知橢圓C: 的右焦點為,離心率

(1)求橢圓C的標準方程;

(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點M ,使得恒成立?若存在,求出點M的坐標,若不存在,請說明理由.

【答案】(1)

(2)x軸上存在點,使得恒成立,理由見解析.

【解析】

1)根據(jù)焦點坐標、離心率結(jié)合列式,求得的值,從而求得橢圓的標準方程.

2)假設(shè)軸上存在,使.當直線斜率為時,求得兩點的坐標,利用列方程,解方程求得的值.當直線斜率不存在時,求得兩點的坐標,利用列方程,解方程求得的值.由此判斷,由此求得點坐標,再證當直線斜率存在時,即可.當直線斜率存在時,設(shè)出直線的方程,聯(lián)立直線方程和橢圓方程,寫出韋達定理,計算得,由此求得符合題意的點的坐標.

(1)∵ ,, ∴,

∴ 橢圓方程為

(2)假設(shè)x軸上存在點M(m,0),使得,

①當直線l的斜率為0時, ,,

, 解得

②當直線l的斜率不存在時, ,,

,

解得 ,

由①②可得

下面證明時, 恒成立.

直線l斜率存在時,設(shè)直線方程為.

消y整理得: ,

,,

.

.

綜上,軸上存在點,使得恒成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在正四面體 ABCD 中,P,Q分別是棱 AB,CD的中點,E,F(xiàn)分別是直線AB,CD上的動點,M 是EF 的中點,則能使點 M 的軌跡是圓的條件是( )

A. PE+QF=2B. PEQF=2

C. PE=2QFD. PE2+QF2=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點及圓.

1)若直線過點且被圓截得的線段長為,的方程;

(2)求過點的圓的弦的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大學先修課程,是在高中開設(shè)的具有大學水平的課程,旨在讓學有余力的高中生早接受大學思維方式、學習方法的訓練,為大學學習乃至未來的職業(yè)生涯做好準備.某高中成功開設(shè)大學先修課程已有兩年,共有250人參與學習先修課程,這兩年學習先修課程的學生都參加了高校的自主招生考試(滿分100分),結(jié)果如下表所示:

分數(shù)

人數(shù)

25

50

100

50

25

參加自主招生獲得通過的概率

0.9

0.8

0.6

0.4

0.3

(Ⅰ)這兩年學校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫相應列聯(lián)表,并根據(jù)列聯(lián)表檢驗能否在犯錯的概率不超過0.01的前提下認為學習先修課程與優(yōu)等生有關(guān)系?

優(yōu)等生

非優(yōu)等生

總計

學習大學先修課程

250

沒有學習大學先修課程

總計

150

(Ⅱ)已知今年全校有150名學生報名學習大學選項課程,并都參加了高校的自主招生考試,以前兩年參加大學先修課程學習成績的頻率作為今年參加大學先修課程學習成績的概率.

(ⅰ)在今年參與大學先修課程學習的學生中任取一人,求他獲得高校自主招生通過的概率;

(ⅱ)某班有4名學生參加了大學先修課程的學習,設(shè)獲得高校自主招生通過的人數(shù)為,的分布列試估計今年全校參加大學先修課程學習的學生獲得高校自主招生通過的人數(shù).

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,,且,

(1)證明:平面;

(2)在線段上,是否存在一點,使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)已知是直線上的動點,點的坐標是,過的直線垂直,并且與線段的垂直平分線相交于點 .

(1)求點的軌跡的方程;

(2)設(shè)曲線上的動點關(guān)于軸的對稱點為,點的坐標為,直線與曲線的另一個交點為(不重合),是否存在一個定點,使得三點共線?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:區(qū)間,,,的長度均為,若不等式的解集是互不相交區(qū)間的并集,設(shè)該不等式的解集中所有區(qū)間的長度之和為,則( )

A. 時,B. 時,

C. 時,D. 時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)當時,求的單調(diào)區(qū)間;

(2)設(shè),若,為函數(shù)的兩個不同極值點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了對某課題進行研究,用分層抽樣方法從三所高校,,的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人).

高校

相關(guān)人員

抽取人數(shù)

A

18

B

36

2

C

54

1)求,;

2)若從高校,抽取的人中選2人做專題發(fā)言,求這2人都來自高校的概率.

查看答案和解析>>

同步練習冊答案