已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)連結(jié)成等腰直角三角形,直線是拋物線的一條切線。
(1)  求橢圓方程;
(2)  直線交橢圓于A、B兩點(diǎn),若點(diǎn)P滿足(O為坐標(biāo)原點(diǎn)), 判斷點(diǎn)P是否在橢圓上,并說明理由。


本試題結(jié)合了導(dǎo)數(shù)的幾何意義來求解橢圓的方程以直線與橢圓的位置關(guān)系的綜合運(yùn)用。
(1)利用已知中切線的斜率就是該點(diǎn)的導(dǎo)數(shù)值,然后得到直線方程,同時(shí)利用橢圓的性質(zhì)得到參數(shù)a,bc,的關(guān)系式得到求解。
(2)聯(lián)立方程組,結(jié)合已知中的向量關(guān)系,得到坐標(biāo)關(guān)系,利用點(diǎn)P的坐標(biāo),代入橢圓中,判定是否符合題意。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)=時(shí),求曲線在點(diǎn)(,)處的切線方程。
(2) 若函數(shù)在(1,)上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù)若不存在,說明理由。若存在,求出的值,并加以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)
已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù),為正數(shù))
(I)若處取得極值,且的一個(gè)零點(diǎn),求的值;
(II)若,求在區(qū)間上的最大值;
(III)設(shè)函數(shù)在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù),.
(Ⅰ)當(dāng)時(shí),求的單調(diào)遞增區(qū)間;
(Ⅱ)若的圖象恒在的圖象的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若直線與函數(shù)的圖像有個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)(常數(shù)a,b滿足0<a<1,bR)
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)任意的,不等式|a恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)是否存在實(shí)數(shù),使得函數(shù)有唯一的極值,且極值大于?若存在,,求的取值
范圍;若不存在,說明理由;
(Ⅲ)如果對(duì),總有,則稱的凸
函數(shù),如果對(duì),總有,則稱的凹函數(shù).當(dāng)時(shí),利用定義分析的凹凸性,并加以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

y=x -ln(1+x)的單調(diào)遞增區(qū)間是 (     )
A.( -1 ,0 )B.( -1 ,+)C.(0 ,+ )D.(1 ,+ )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是       .

查看答案和解析>>

同步練習(xí)冊(cè)答案