13.已知x,y∈R,i是虛數(shù)單位,若2+xi與$\frac{3+yi}{1+i}$互為共軛復(fù)數(shù),則(x+yi)2=( 。
A.3iB.3+2iC.-2iD.2i

分析 利用復(fù)數(shù)的運(yùn)算法則化簡(jiǎn)$\frac{3+yi}{1+i}$,再利用共軛復(fù)數(shù)的定義即可得出.

解答 解:$\frac{3+yi}{1+i}=\frac{(3+yi)(1-i)}{(1+i)(1-i)}=\frac{(3+y)+(y-3)i}{2}$,
由共軛復(fù)數(shù)的概念可得$\left\{\begin{array}{l}{\frac{3+y}{2}=2}\\{\frac{y-3}{2}=-x}\end{array}\right.$,解得$\left\{{\begin{array}{l}{x=1}\\{y=1}\end{array}}\right.$,
則(x+yi)2=(1+i)2=2i.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知i為虛數(shù)單位,$\overline{z}$是z的共軛復(fù)數(shù),若($\overline{z}$+i)(1-i)=1+3i,則|z|=( 。
A.2B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.${(x-\frac{1}{2x})^6}•{x^{12}}$的展開式中含x6項(xiàng)的系數(shù)為( 。
A.$-\frac{1}{16}$B.$\frac{1}{32}$C.$-\frac{1}{32}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\frac{3}{4}{e^{x+\frac{1}{2}}}$,g(x)=ax3-x2-x+b(a,b∈R,a≠0),g(x)的圖象C在x=-$\frac{1}{2}$處的切線方程是y=$\frac{3}{4}x+\frac{9}{8}$.
(1)若?x1,x2∈(c,d),且x1≠x2,$\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}$<0成立,求c的最小值,d的最大值;
(2)探究函數(shù)h(x)=f(x)-($\frac{3}{4}x+\frac{9}{8}$)在(-∞,2]上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,且|$\overrightarrow a$+2$\overrightarrow b}$|=2$\sqrt{3}$,|${\overrightarrow b}$|=1,則|$\overrightarrow a}$|=(  )
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,AB是⊙O的直徑,BC是⊙O的切線,B為切點(diǎn),OC平行于弦AD,連接CD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)P,求證:點(diǎn)P平分線段DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,點(diǎn)F1,F(xiàn)2分別為橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),橢圓E上任意一點(diǎn)到左焦點(diǎn)的距離的取值范圍為[2-$\sqrt{2}$,2+$\sqrt{2}$],直線l:y=kx+1與橢圓相交于A,B兩點(diǎn).
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)若Q(0,2),是否存在實(shí)數(shù)k,使得△ABQ的面積為$\frac{4}{3}$?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_3}({x^2}+1),x≥0\\ g(x)+3x,x<0\end{array}$為奇函數(shù),則g(-2)=6-log35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列關(guān)于獨(dú)立性檢驗(yàn)的說法中,錯(cuò)誤的是( 。
A.獨(dú)立性檢驗(yàn)依據(jù)小概率原理
B.獨(dú)立性檢驗(yàn)原理得到的結(jié)論一定正確
C.樣本不同,獨(dú)立性檢驗(yàn)的結(jié)論可能有差異
D.獨(dú)立性檢驗(yàn)不是判定兩類事物是否相關(guān)的唯一方法

查看答案和解析>>

同步練習(xí)冊(cè)答案