【題目】已知函數(shù)f(x)a.

(1)f(0);

(2)探究f(x)的單調(diào)性,并證明你的結(jié)論;

(3)f(x)為奇函數(shù),求滿足f(ax)<f(2)x的取值范圍.

【答案】(1)f(0)=a-1;(2)見解析;(3)(-∞,2).

【解析】試題分析:(1)代入x=0即可得值;

(2)利用單調(diào)性的定義任取x1x2∈R,且x1<x2,判斷f(x1)-f(x2)與0的大小即可;

(3)由奇函數(shù)的定義f(-x)=-f(x),得a=1,進(jìn)而由函數(shù)單調(diào)性解不等式即可.

試題解析:

(1)f(0)=aa-1.

(2)∵f(x)的定義域?yàn)镽,

∴任取x1,x2∈R,且x1<x2,

f(x1)-f(x2)=aa

.

y=2x在R上單調(diào)遞增,且x1<x2,

∴0<2x1<2x2

∴2x1-2x2<0,2x1+1>0,2x2+1>0,

f(x1)-f(x2)<0,

f(x1)<f(x2),∴f(x)在R上單調(diào)遞增.

(3)∵f(x)是奇函數(shù),

f(-x)=-f(x),

a=-a,解得a=1.

[或用f(0)=0求解]

f(ax)<f(2)即為f(x)<f(2).

又∵f(x)在R上單調(diào)遞增,

x<2.(或代入化簡亦可)

x的取值范圍為(-∞,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A{x|ax23x20}.

(1)A是單元素集合,求集合A;

(2)A中至少有一個(gè)元素,a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進(jìn)行消毒,已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間t(小時(shí))成正比;藥物釋放完畢后,yt的函數(shù)關(guān)系式為 (a為常數(shù)),如圖所示.根據(jù)圖中提供的信息,回答下列問題:

(1)從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式為_________;

(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時(shí),學(xué)生方可進(jìn)教室,那么從藥物釋放開始,至少需要經(jīng)過_________小時(shí)后,學(xué)生才能回到教室.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】屆夏季奧林匹克運(yùn)動(dòng)會(huì)將于 2016 8 5 21 日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運(yùn)會(huì)中國代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù)( 單位: 枚).

倫敦

北京

屆雅典

屆悉尼

屆亞特蘭大

中國

俄羅斯

(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運(yùn)會(huì)兩國代表團(tuán)獲得的金牌數(shù)的莖葉圖, 并通過莖葉圖比較兩國代表團(tuán)獲得的金牌數(shù)的平均值及分散程度( 不要求計(jì)算出具體數(shù)值, 給出結(jié)論即可);

(2)甲、 乙、 丙三人競猜今年中國代表團(tuán)和俄羅斯代表團(tuán)中的哪一個(gè)獲得的金牌數(shù)多( 假設(shè)兩國代表團(tuán)獲得的金牌數(shù)不會(huì)相等) 規(guī)定甲、 乙、 丙必須在兩個(gè)代表團(tuán)中選一個(gè), 已知甲、 乙猜中國代表團(tuán)的概率都為, 丙猜中國代表團(tuán)的概率為 , 三人各自猜哪個(gè)代表團(tuán)的結(jié)果互不影響.現(xiàn)讓甲、 乙、 丙各猜一次, 設(shè)三人中猜中國代表團(tuán)的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大家知道, 莫言是中國首位獲得諾貝爾獎(jiǎng)的文學(xué)家, 國人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取名同學(xué)調(diào)查對莫言作品的了解程度, 結(jié)果如下:

閱讀過莫言的作品數(shù)(

男生

女生

(1)試估計(jì)該校學(xué)生閱讀莫言作品超過篇的概率;

(2)對莫言作品閱讀超過篇的則稱為對莫言作品非常了解 , 否則為 一般了解 .根據(jù)題意完成下表, 并判斷能否在犯錯(cuò)誤的概率不超過的前提下, 認(rèn)為對莫言作品非常了解與性別有關(guān)?

非常了解

一般了解

合計(jì)

男生

女生

合計(jì)

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.證明:

(1)當(dāng),;

(2)對任意,當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國家鼓勵(lì)消費(fèi)者購買新能源汽車,某校研究性學(xué)習(xí)小組,從汽車市場上隨機(jī)選取了輛純電動(dòng)乘用車,根據(jù)其續(xù)駛里程(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計(jì)表:

(1)求的值;

(2)若用分層抽樣的方法從這輛純電動(dòng)乘用車中抽取一個(gè)容量為6的樣本,從該樣本中任選2輛,求選到的2輛車?yán)m(xù)駛里程為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機(jī)對50名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過的有10人.在20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.

(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過的人與性別有關(guān);

平均車速超過

人數(shù)

平均車速不超過

人數(shù)

合計(jì)

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計(jì)

(Ⅱ )以上述數(shù)據(jù)樣本來估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.

參考公式: ,其中

參考數(shù)據(jù):

0.150

0.100

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)的圖像在處的切線垂直于直線,求實(shí)數(shù)的值及直線的方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求證:

查看答案和解析>>

同步練習(xí)冊答案