【題目】已知函數(shù)f(x)=a-.
(1)求f(0);
(2)探究f(x)的單調(diào)性,并證明你的結(jié)論;
(3)若f(x)為奇函數(shù),求滿足f(ax)<f(2)的x的取值范圍.
【答案】(1)f(0)=a-1;(2)見解析;(3)(-∞,2).
【解析】試題分析:(1)代入x=0即可得值;
(2)利用單調(diào)性的定義任取x1,x2∈R,且x1<x2,判斷f(x1)-f(x2)與0的大小即可;
(3)由奇函數(shù)的定義f(-x)=-f(x),得a=1,進(jìn)而由函數(shù)單調(diào)性解不等式即可.
試題解析:
(1)f(0)=a-=a-1.
(2)∵f(x)的定義域?yàn)镽,
∴任取x1,x2∈R,且x1<x2,
則f(x1)-f(x2)=a--a+
=.
∵y=2x在R上單調(diào)遞增,且x1<x2,
∴0<2x1<2x2,
∴2x1-2x2<0,2x1+1>0,2x2+1>0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),∴f(x)在R上單調(diào)遞增.
(3)∵f(x)是奇函數(shù),
∴f(-x)=-f(x),
即a-=-a+,解得a=1.
[或用f(0)=0求解]
∴f(ax)<f(2)即為f(x)<f(2).
又∵f(x)在R上單調(diào)遞增,
∴x<2.(或代入化簡亦可)
故x的取值范圍為(-∞,2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|ax2-3x+2=0}.
(1)若A是單元素集合,求集合A;
(2)若A中至少有一個(gè)元素,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進(jìn)行消毒,已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間t(小時(shí))成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為 (a為常數(shù)),如圖所示.根據(jù)圖中提供的信息,回答下列問題:
(1)從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式為_________;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時(shí),學(xué)生方可進(jìn)教室,那么從藥物釋放開始,至少需要經(jīng)過_________小時(shí)后,學(xué)生才能回到教室.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第屆夏季奧林匹克運(yùn)動(dòng)會(huì)將于 2016 年 8 月 5 日—21 日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運(yùn)會(huì)中國代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù)( 單位: 枚).
第屆倫敦 | 第屆 北京 | 第屆雅典 | 第屆悉尼 | 第屆亞特蘭大 | |
中國 | |||||
俄羅斯 |
(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運(yùn)會(huì)兩國代表團(tuán)獲得的金牌數(shù)的莖葉圖, 并通過莖葉圖比較兩國代表團(tuán)獲得的金牌數(shù)的平均值及分散程度( 不要求計(jì)算出具體數(shù)值, 給出結(jié)論即可);
(2)甲、 乙、 丙三人競猜今年中國代表團(tuán)和俄羅斯代表團(tuán)中的哪一個(gè)獲得的金牌數(shù)多( 假設(shè)兩國代表團(tuán)獲得的金牌數(shù)不會(huì)相等) , 規(guī)定甲、 乙、 丙必須在兩個(gè)代表團(tuán)中選一個(gè), 已知甲、 乙猜中國代表團(tuán)的概率都為, 丙猜中國代表團(tuán)的概率為 , 三人各自猜哪個(gè)代表團(tuán)的結(jié)果互不影響.現(xiàn)讓甲、 乙、 丙各猜一次, 設(shè)三人中猜中國代表團(tuán)的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大家知道, 莫言是中國首位獲得諾貝爾獎(jiǎng)的文學(xué)家, 國人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取名同學(xué)調(diào)查對莫言作品的了解程度, 結(jié)果如下:
閱讀過莫言的作品數(shù)( 篇) | |||||
男生 | |||||
女生 |
(1)試估計(jì)該校學(xué)生閱讀莫言作品超過篇的概率;
(2)對莫言作品閱讀超過篇的則稱為“對莫言作品非常了解” , 否則為“ 一般了解” .根據(jù)題意完成下表, 并判斷能否在犯錯(cuò)誤的概率不超過的前提下, 認(rèn)為對莫言作品非常了解與性別有關(guān)?
非常了解 | 一般了解 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國家鼓勵(lì)消費(fèi)者購買新能源汽車,某校研究性學(xué)習(xí)小組,從汽車市場上隨機(jī)選取了輛純電動(dòng)乘用車,根據(jù)其續(xù)駛里程(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計(jì)表:
(1)求的值;
(2)若用分層抽樣的方法從這輛純電動(dòng)乘用車中抽取一個(gè)容量為6的樣本,從該樣本中任選2輛,求選到的2輛車?yán)m(xù)駛里程為的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機(jī)對50名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過的有10人.在20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過的人與性別有關(guān);
平均車速超過 人數(shù) | 平均車速不超過 人數(shù) | 合計(jì) | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計(jì) |
(Ⅱ )以上述數(shù)據(jù)樣本來估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.
參考公式: ,其中.
參考數(shù)據(jù):
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)的圖像在處的切線垂直于直線,求實(shí)數(shù)的值及直線的方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com