【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機(jī)對(duì)50名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在30名男性駕駛員中,平均車速超過(guò)的有20人,不超過(guò)的有10人.在20名女性駕駛員中,平均車速超過(guò)的有5人,不超過(guò)的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過(guò)的人與性別有關(guān);
平均車速超過(guò) 人數(shù) | 平均車速不超過(guò) 人數(shù) | 合計(jì) | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計(jì) |
(Ⅱ )以上述數(shù)據(jù)樣本來(lái)估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為女性且車速不超過(guò)的車輛數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.
參考公式: ,其中.
參考數(shù)據(jù):
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)有的把握,(Ⅱ) ,分布列見(jiàn)解析
【解析】試題分析: (Ⅰ)先根據(jù)題意填寫表格(注意對(duì)應(yīng)關(guān)系),再代入公式,并將計(jì)算結(jié)果與參考數(shù)據(jù)進(jìn)行對(duì)照,確定把握率范圍,進(jìn)而判段是否有的把握.(Ⅱ)根據(jù)頻率估計(jì)概率得:駕駛員為女性且車速不超過(guò)的車輛的概率為.由于隨機(jī)變量服從二項(xiàng)分布,根據(jù)公式 可得隨機(jī)變量對(duì)應(yīng)的概率,列表可得分布列,根據(jù)可得數(shù)學(xué)期望.
試題解析:解:(Ⅰ)
平均車數(shù)超過(guò) 人數(shù) | 平均車速不超過(guò) 人數(shù) | 合計(jì) | |
男性駕駛員人數(shù) | 20 | 10 | 30 |
女性駕駛員人數(shù) | 5 | 15 | 20 |
合計(jì) | 25 | 25 | 50 |
,
所以有的把握認(rèn)為平均車速超過(guò)與性別有關(guān).
(Ⅱ)根據(jù)樣本估計(jì)總體的思想,從高速公路上行駛的大量家用轎車中隨即抽取1輛,駕駛員為女性且車速不超過(guò)的車輛的概率為.
的可能取值為,且,
,
,
分布列為:
0 | 1 | 2 | 3 | |
.
或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2-2mx+4m2-6=0的兩不等根為α,β,試求(α-1)2+(β-1)2的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=a-.
(1)求f(0);
(2)探究f(x)的單調(diào)性,并證明你的結(jié)論;
(3)若f(x)為奇函數(shù),求滿足f(ax)<f(2)的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的極坐標(biāo)方程為,直線的參數(shù)方程為.若直線與圓C相交于不同的兩點(diǎn)P,Q.
(Ⅰ)寫出圓C的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;
(Ⅱ)若弦長(zhǎng)|PQ|=4,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為.設(shè)過(guò)點(diǎn)的直線與橢圓相交于不同兩點(diǎn), 周長(zhǎng)為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),證明:當(dāng)直線變化時(shí),總有TA與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,,分別為,的中點(diǎn),平面平面,且.
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=+x在x=1處的切線方程為2x﹣y+b=0.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若函數(shù)g(x)=f(x)+x2﹣kx,且g(x)是其定義域上的增函數(shù),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】集合A是由且備下列性質(zhì)的函數(shù)組成的:
①函數(shù)的定義域是;②函數(shù)的值域是;
③函數(shù)在上是增函數(shù),試分別探究下列兩小題:
(1)判斷函數(shù)數(shù)及是否屬于集合A?并簡(jiǎn)要說(shuō)明理由;
(2)對(duì)于(1)中你認(rèn)為屬于集合A的函數(shù),不等式
是否對(duì)于任意的恒成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), ,且函數(shù)的圖象關(guān)于直線對(duì)稱。
(1)求函數(shù)在區(qū)間上最大值;
(2)設(shè),不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè)有唯一零點(diǎn),求實(shí)數(shù)的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com