【題目】某企業(yè)生產(chǎn)某種電子設(shè)備的年固定成本為500(萬元),每生產(chǎn)x臺(tái),需另投入成本(萬元),當(dāng)年產(chǎn)量不足60臺(tái)時(shí),(萬元);當(dāng)年產(chǎn)量不小于60臺(tái)時(shí),,若每臺(tái)售價(jià)為100(萬元)時(shí),該廠當(dāng)年生產(chǎn)的該電子設(shè)備能全部銷售完.
(1)寫出年利潤y(萬元)關(guān)于年產(chǎn)量x(臺(tái))的函數(shù)關(guān)系式;
(2)當(dāng)年產(chǎn)量為多少臺(tái)時(shí),該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?
【答案】(1);(2)年產(chǎn)量為70臺(tái)時(shí),該企業(yè)的設(shè)備的生產(chǎn)中所獲得利潤最大為1300(萬元)
【解析】
(1)根據(jù)年利潤的定義,銷售收入減固定成本為500(萬元)減每生產(chǎn)x臺(tái),投入成本(萬元)求解。
(2)根據(jù)(1)的結(jié)果,求每一段的最大值,取最大的為分段函數(shù)的最大值.
(1)當(dāng)時(shí),有
當(dāng)時(shí),有,
∴;
(2)由(1)可得:當(dāng)時(shí),有,
∴時(shí),y取得最大值為1100(萬元),
當(dāng)時(shí),有(當(dāng)且僅當(dāng)時(shí)取等號(hào))
即當(dāng)時(shí)y取得最大值為1300(萬元)
綜上可得:年產(chǎn)量為70臺(tái)時(shí),該企業(yè)的設(shè)備的生產(chǎn)中所獲得利潤最大為1300(萬元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為(其中為常數(shù)).
(1)若曲線N與曲線M只有一個(gè)公共點(diǎn),求的取值范圍;
(2)當(dāng)時(shí),求曲線M上的點(diǎn)與曲線N上的點(diǎn)之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)是由 個(gè)實(shí)數(shù)組成的行列的數(shù)表,其中 表示位于第行第列的實(shí)數(shù),且.
定義 為第s行與第t行的積. 若對(duì)于任意(),都有,則稱數(shù)表為完美數(shù)表.
(Ⅰ)當(dāng)時(shí),試寫出一個(gè)符合條件的完美數(shù)表;
(Ⅱ)證明:不存在10行10列的完美數(shù)表;
(Ⅲ)設(shè)為行列的完美數(shù)表,且對(duì)于任意的和,都有,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.
(1)證明:平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電子公司新開發(fā)一電子產(chǎn)品,該電子產(chǎn)品的一個(gè)系統(tǒng)G有3個(gè)電子元件組成,各個(gè)電子元件能否正常工作的概率均為,且每個(gè)電子元件能否正常工作相互獨(dú)立.若系統(tǒng)C中有超過一半的電子元件正常工作,則G可以正常工作,否則就需要維修,且維修所需費(fèi)用為500元.
(1)求系統(tǒng)不需要維修的概率;
(2)該電子產(chǎn)品共由3個(gè)系統(tǒng)G組成,設(shè)E為電子產(chǎn)品需要維修的系統(tǒng)所需的費(fèi)用,求的分布列與期望;
(3)為提高G系統(tǒng)正常工作概率,在系統(tǒng)內(nèi)增加兩個(gè)功能完全一樣的其他品牌的電子元件,每個(gè)新元件正常工作的概率均為,且新增元件后有超過一半的電子元件正常工作,則C可以正常工作,問:滿足什么條件時(shí),可以提高整個(gè)G系統(tǒng)的正常工作概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1)經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再從這6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購,高于或等于250克的以3元/個(gè)收購,通過計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某社區(qū)舉行的2020迎春晚會(huì)上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個(gè)人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計(jì)分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設(shè)張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.
(1)若家庭最終積分超過200分時(shí),這個(gè)家庭就可以領(lǐng)取一臺(tái)全自動(dòng)洗衣機(jī),問張明和王慧他們家庭可以領(lǐng)取一臺(tái)全自動(dòng)洗衣機(jī)的概率是多少?
(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于兩點(diǎn),是否存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com