【題目】某公司計(jì)劃投資A、B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資量的算術(shù)平方根成正比例,其關(guān)系如圖1B產(chǎn)品的利潤(rùn)與投資量成正比例,其關(guān)系如圖2(注:利潤(rùn)與投資量的單位:萬(wàn)元).

1)分別將AB兩產(chǎn)品的利潤(rùn)表示為投資量的函數(shù)關(guān)系式;

2)該公司已有10萬(wàn)元資金,并全部投入A、B兩種產(chǎn)品中,問:怎樣分配這10萬(wàn)元投資,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?

【答案】(1)A產(chǎn)品的利潤(rùn)為,B產(chǎn)品的利潤(rùn)為(2)當(dāng)A產(chǎn)品投入4萬(wàn)元,B產(chǎn)品投入6萬(wàn)元時(shí),該企業(yè)獲得最大利潤(rùn)為萬(wàn)元

【解析】

(1)設(shè)投資x萬(wàn)元,A產(chǎn)品的利潤(rùn)為萬(wàn)元,B產(chǎn)品的利潤(rùn)為萬(wàn)元,利用已知條件,結(jié)合函數(shù)的圖象求解函數(shù)的解析式即可.

(2)設(shè)A產(chǎn)品投入x萬(wàn)元,則B產(chǎn)品投入萬(wàn)元,設(shè)企業(yè)利潤(rùn)為y萬(wàn)元,由(1)利用二次函數(shù)的性質(zhì)求解函數(shù)的最大值即可.

(1)設(shè)投資x萬(wàn)元,A產(chǎn)品的利潤(rùn)為萬(wàn)元,B產(chǎn)品的利潤(rùn)為萬(wàn)元,

依題意可設(shè)

由圖1,得,即,

由圖2,得,即

(2)設(shè)A產(chǎn)品投入x萬(wàn)元,則B產(chǎn)品投入萬(wàn)元,設(shè)企業(yè)利潤(rùn)為y萬(wàn)元,

當(dāng),即時(shí),

因此當(dāng)A產(chǎn)品投入4萬(wàn)元,B產(chǎn)品投入6萬(wàn)元時(shí),該企業(yè)獲得最大利潤(rùn)為萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn),若點(diǎn)的極坐標(biāo)為,直線經(jīng)過(guò)點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題對(duì)任意實(shí)數(shù),不等式恒成立;命題方程表示焦點(diǎn)在軸上的雙曲線.

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若命題:為真命題,且為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中;

(Ⅰ)若函數(shù)處取得極值,求實(shí)數(shù)的值,

(Ⅱ)在(Ⅰ)的結(jié)論下,若關(guān)于的不等式,當(dāng)時(shí)恒成立,求的值.

(Ⅲ)令,若關(guān)于的方程內(nèi)至少有兩個(gè)解,求出實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1 ,正方形的邊長(zhǎng)為分別是的中點(diǎn),是正方形的對(duì)角線的交點(diǎn),是正方形兩對(duì)角線的交點(diǎn),現(xiàn)沿折起到的位置,使得,連結(jié)(如圖2).

(1)求證:

(2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級(jí)階梯式水價(jià)計(jì)量辦法,具體如下:第一階梯,每戶居民月用水量不超過(guò)12噸,價(jià)格為4元/噸;第二階梯,每戶居民月用水量超過(guò)12噸,超過(guò)部分的價(jià)格為8元/噸.為了了解全市居民月用水量的分布情況,通過(guò)抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照 ,…, 分成8組,制成了如圖1所示的頻率分布直方圖.

(圖1) (圖2)

(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;

(Ⅱ)通過(guò)頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));

(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是. 若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的直角頂點(diǎn)軸上,點(diǎn)為斜邊的中點(diǎn),且平行于軸.

(1)求點(diǎn)的軌跡方程;

(2)設(shè)點(diǎn)的軌跡為曲線,直線的另一個(gè)交點(diǎn)為.以為直徑的圓交軸于、,記此圓的圓心為,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)根、.

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求的取值范圍;

(2)試比較的大小,并說(shuō)明理由;

(3)設(shè)的兩個(gè)極值點(diǎn)為,證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案