精英家教網 > 高中數學 > 題目詳情
16.在銳角△ABC中,角A、B、C的對邊分別是a,b,c若a=4,b=5,△ABC的面積為5$\sqrt{3}$,則|AB|=$\sqrt{21}$.

分析 根據題意和三角形的面積公式求出sinC,由△ABC是銳角三角形和特殊角的三角函數值求出C,利用余弦定理求出c的值,即可得解.

解答 解:∵a=4,b=5,△ABC的面積為5$\sqrt{3}$,
∴$\frac{1}{2}$absinC=5$\sqrt{3}$,則$\frac{1}{2}$×4×5sinC=5$\sqrt{3}$,
解得sinC=$\frac{\sqrt{3}}{2}$,
由△ABC是銳角三角形得,C=$\frac{π}{3}$,
由余弦定理得,c2=a2+b2-2abcosC
=16+25-2×4×5×$\frac{1}{2}$=21,
∴c=$\sqrt{21}$,則|AB|=c=$\sqrt{21}$.
故答案為:$\sqrt{21}$.

點評 本題考查了余弦定理,以及三角形的面積公式在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

11.已知數列{an}的前n項和為Sn,且a2n-1=3n-1,a2n=2n,則滿足Sn<500的最大的n值為( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知函數f(x)=alnx+$\frac{1}{2}$x2-(a+1)x(a∈R).
( I)若x=2為函數f(x)的極值點,求a的值.
( II)討論函數f(x)在區(qū)間(0,2)內的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.已知角α的終邊與y軸的正半軸的夾角為30°,且終邊落在第二象限,又-720°<α<0°,則角α為-240°,-600°.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,過點(1,$\frac{3}{2}$),過其右焦點F作直線l交C于A、B兩點.
(Ⅰ)求橢圓方程;
(Ⅱ)過A作x軸的垂線交C于另一點Q(Q不與A、B重合).
(i)設G為△ABO的外接圓的圓心,證明:$\frac{|AB|}{|GF|}$為定值;
(ii)證明:直線BQ過定點P.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.定義在R上的函數y=f(x-1)是單調遞減函數(如圖所示),給出四個結論,其中正確結論個數是( 。
①f(0)=1  ②f(1)<1    ③f-1(1)=0    ④f-1($\frac{1}{2}$)>0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.若直線2x+3y-1=0與直線4x+my+11=0平行,則m的值為( 。
A.$\frac{8}{3}$B.$-\frac{8}{3}$C.-6D.6

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.如圖,在四棱柱ABCD-A1B1C1D1中,側面ADD1A1和側面CDD1C1都是矩形,BC∥AD,△ABD是邊長為2的正三角形,E,F分別為AD,A1D1的中點.
(1)求證:平面A1BE⊥平面ADD1A1;
(2)若CF∥平面A1BE,求棱BC的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知數列{an}中,a1=4,n(an-an-1-2)=an-1+2n2,則$\frac{1}{{a}_{12}}$+$\frac{1}{{a}_{13}}$+$\frac{1}{{a}_{14}}$+…+$\frac{1}{{a}_{23}}$=( 。
A.$\frac{1}{48}$B.$\frac{1}{24}$C.$\frac{23}{48}$D.$\frac{11}{24}$

查看答案和解析>>

同步練習冊答案