【題目】f(x)=(ax2+x﹣1)ex
(1)當(dāng)a<0時(shí),求f(x)的單調(diào)區(qū)間;
(2)若a=﹣1,f(x)的圖象與g(x)= x3+ x2+m的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)m的范圍.
【答案】
(1)解:∵f'(x)=ex(ax2+x+1+2ax+1)=axex(x+ ),且a<0,
∴當(dāng)a∈(﹣ ,0)時(shí),f(x)在(﹣∞,0)上是減函數(shù),在(0,﹣ )上是增函數(shù),在(﹣ ,+∞)上是減函數(shù),
當(dāng)a=﹣ 時(shí),f(x)在(﹣∞,+∞)上單調(diào)遞減;
當(dāng)a∈(﹣∞,﹣ )時(shí),f(x)在(﹣∞,﹣ )上是減函數(shù),在(﹣ ,0)上是增函數(shù),在(0,+∞)上是減函數(shù)
(2)解:令h(x)=f(x)﹣g(x)=(﹣x2+x﹣1)ex﹣( x3+ x2+m),
則h′(x)=(﹣2x+1)ex+(﹣x2+x﹣1)ex﹣(x2+x)=﹣(ex+1)(x2+x)
令h′(x)>0得﹣1<x<0,令h′(x)<0得x>0或x<﹣1.
∴h(x)在x=﹣1處取得極小值h(﹣1)=﹣ ﹣ ﹣m,在x=0處取得極大值h(0)=﹣1﹣m,
∵函數(shù)f(x),g(x)的圖象有三個(gè)交點(diǎn),即函數(shù)h(x)有3個(gè)不同的零點(diǎn),
∴ 即 ,
解得:﹣ ﹣ <m<﹣1
【解析】(1)先求出函數(shù)f(x)的導(dǎo)函數(shù)f'(x),然后討論a與0的大小關(guān)系,在函數(shù)的定義域內(nèi)解不等式f'(x)>0和f'(x)<0,即可求出函數(shù)f(x)的單調(diào)區(qū)間;(2)令h(x)=f(x)﹣g(x),求出導(dǎo)數(shù),求出單調(diào)區(qū)間,和極值,函數(shù)f(x),g(x)的圖象有三個(gè)交點(diǎn),即函數(shù)h(x)有3個(gè)不同的零點(diǎn),即有h(﹣1)<0,且h(0)>0,解出即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的零點(diǎn)與方程根的關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心為C的圓經(jīng)過點(diǎn)A(0,2)和B(1,1),且圓心C在直線l:x+y+5=0上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若P(x,y)是圓C上的動(dòng)點(diǎn),求3x﹣4y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是邊長為2的正方形的邊的中點(diǎn),將與分別沿、折起,使得點(diǎn)與點(diǎn)重合,記為點(diǎn),得到三棱錐.
(Ⅰ)求證:平面平面;
(Ⅱ)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=2sin(2x+ )的圖象,只需把函數(shù)y=2sinx的圖象( )
A.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變)
B.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼? 倍(縱坐標(biāo)不變)
C.各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉淼?倍,再把所得圖象向左平移 個(gè)單位長度
D.各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉淼? 倍,再把所得圖象向左平移 個(gè)單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大;
(2)若a+c=1,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證: ;
(2)設(shè)函數(shù) ,且有兩個(gè)不同的零點(diǎn) ,
①求實(shí)數(shù)的取值范圍; ②求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是等差數(shù)列,數(shù)列{an}的前n項(xiàng)和為Sn , {bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b2=7,S2+b2=6 (Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{anbn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的右焦點(diǎn)在直線: 上,且橢圓上任意兩個(gè)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)與橢圓上任意一點(diǎn)的連線的斜率之積為.
(1)求橢圓的方程;
(2)若直線經(jīng)過點(diǎn),且與橢圓有兩個(gè)交點(diǎn), ,是否存在直線: (其中)使得, 到的距離, 滿足恒成立?若存在,求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩定點(diǎn)A(2,5),B(-2,1),M(在第一象限)和N是過原點(diǎn)的直線l上的兩個(gè)動(dòng)點(diǎn),且|MN|=,l∥AB,如果直線AM和BN的交點(diǎn)C在y軸上,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com