13.“a=b”是“方程ax2+by2=1表示的曲線(xiàn)為圓”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既非充分又非必要條件

分析 根據(jù)圓的定義以及集合的包含關(guān)系判斷即可.

解答 解:若方程ax2+by2=1表示的曲線(xiàn)為圓,
則a=b>0,
故“a=b”是“方程ax2+by2=1表示的曲線(xiàn)為圓”的必要不充分條件,
故選:B.

點(diǎn)評(píng) 本題考查了充分必要條件,考查圓的定義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.[重點(diǎn)中學(xué)做]設(shè)H、P是△ABC所在平面上異于A、B、C的兩點(diǎn),用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrow{h}$分別表示向量$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$,$\overrightarrow{PH}$.已知$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow{c}$•$\overrightarrow{h}$=$\overrightarrow$•$\overrightarrow{c}$+$\overrightarrow{a}$•$\overrightarrow{h}$=$\overrightarrow{c}$•$\overrightarrow{a}$+$\overrightarrow$•$\overrightarrow{h}$,|$\overrightarrow{AH}$|=1,|$\overrightarrow{BH}$|=$\sqrt{2}$,|$\overrightarrow{BC}$|=$\sqrt{3}$,則∠C=( 。
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=sin(2x-$\frac{π}{4}$)+1,x∈R.
(1)求f($\frac{π}{8}$)的值,并求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求下列各值.
(1)若($\sqrt{x}$+$\frac{2}{\root{3}{x}}$)n的展開(kāi)式中第9項(xiàng)與第10項(xiàng)的二項(xiàng)式系數(shù)相等,求x的一次項(xiàng)系數(shù);
(2)已知(2x-1)7=a0x7+a1x6+a2x5+…+a7,求a1+a3+a5+a7的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在用數(shù)學(xué)歸納法證明等式1+2+3+…+2n-1=2n2-n(n∈N*)的第(ii)步中,假設(shè)n=k(k≥1,k∈N*)時(shí)原等式成立,則當(dāng)n=k+1時(shí)需要證明的等式為( 。
A.1+2+3+…+(2k-1)+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1)
B.1+2+3+…+(2k-1)+[2(k+1)-1]=2(k+1)2-(k+1)
C.1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1)
D.1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2(k+1)2-(k+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.命題“?x0∈(0,+∞),ln x0=x0-1”的否定是?x∈(0,+∞),ln x≠x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列說(shuō)法不正確的是( 。
A.有兩個(gè)面平行,其余各面都是四邊形,并且每相鄰的兩個(gè)四邊形的公共邊都互相平行的幾何體叫棱柱
B.圓錐的過(guò)軸的截面是一個(gè)等腰三角形
C.直角三角形繞它的一條邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐
D.圓臺(tái)平行于底面的截面是圓面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.當(dāng)x∈(-∞,-1]時(shí),不等式(m2-m)•4x-2x<0恒成立,則實(shí)數(shù)m的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=ex(e=2.71828…是自然對(duì)數(shù)的底數(shù)),若a<b,則$\frac{f(a)+f(b)}{2}$與$\frac{f(b)-f(a)}{b-a}$的大小關(guān)系是( 。
A.$\frac{f(a)+f(b)}{2}$>$\frac{f(b)-f(a)}{b-a}$B.$\frac{f(a)+f(b)}{2}$=$\frac{f(b)-f(a)}{b-a}$C.$\frac{f(a)+f(b)}{2}$<$\frac{f(b)-f(a)}{b-a}$D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案