A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
分析 根據(jù)向量數(shù)量積的公式和條件進行化簡得到H是△ABC的垂心,結(jié)合三角形的邊角關(guān)系進行求解即可.
解答 解:由題意知$\overrightarrow{PA}$•$\overrightarrow{PB}$+$\overrightarrow{PC}$•$\overrightarrow{PH}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$+$\overrightarrow{PA}$•$\overrightarrow{PH}$,
即$\overrightarrow{PB}$•($\overrightarrow{PA}$-$\overrightarrow{PC}$)+$\overrightarrow{PH}$•($\overrightarrow{PC}$-$\overrightarrow{PA}$)=0,即$\overrightarrow{CA}$•$\overrightarrow{HB}$=0.
同理得$\overrightarrow{AB}$•$\overrightarrow{HC}$=0,故H是△ABC的垂心,
設(shè)∠CAD=∠CBE=θ,則DH=$\sqrt{2}$sinθ,BD=$\sqrt{2}$cosθ,DC=tanθ(1+$\sqrt{2}$sinθ)=$\frac{sinθ+\sqrt{2}sin^2θ}{cosθ}$,
∴BD+DC=$\sqrt{2}$cosθ+$\frac{sinθ+\sqrt{2}sin^2θ}{cosθ}$=$\sqrt{3}$,
整理得$\sqrt{3}$cosθ-sinθ=$\sqrt{2}$,即cos(θ+$\frac{π}{6}$)=$\frac{\sqrt{2}}{2}$,
則θ+$\frac{π}{6}$=$\frac{π}{4}$,即θ=$\frac{π}{12}$,則C=$\frac{5π}{12}$,
故選:A.
點評 本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)條件判斷H是△ABC的垂心是解決本題的關(guān)鍵.綜合性較強,考查學(xué)生的轉(zhuǎn)化和運算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1≤x≤3} | B. | {x|0≤x<4} | C. | {1,2,3} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,4} | B. | {1,2,4} | C. | {2,3,4,5} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{63}$ | B. | $\frac{1}{31}$ | C. | $\frac{3}{61}$ | D. | $\frac{1}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-1 | B. | x=-$\frac{1}{2}$ | C. | x=1 | D. | x=$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com