6.某工廠有A,B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一件甲產(chǎn)品使用4個A配件,耗時1h,每生產(chǎn)一件乙產(chǎn)品使用4個B配件,耗時2h,該廠每天最多可從配件廠獲得24個A配件和16個B配件,每天生產(chǎn)總耗時不超過8h,若生產(chǎn)一件甲產(chǎn)品獲利3萬元,生產(chǎn)一件乙產(chǎn)品獲利4萬元,則通過恰當?shù)纳a(chǎn)安排,該工廠每天可獲得的最大利潤為22萬元.

分析 根據(jù)條件建立不等式組和線性目標函數(shù),利用圖象可求該廠的日利潤最大值.

解答 解:設甲、乙兩種產(chǎn)品分別生產(chǎn)x、y件,
工廠獲得的利潤為z又已知條件可得二元一次不等式組:
$\left\{\begin{array}{l}{x+2y≤8}\\{4x≤24}\\{4y≤16}\\{x≥0}\\{y≥0}\end{array}\right.$目標函數(shù)為z=3x+4y,
由$\left\{\begin{array}{l}{x+2y=8}\\{x=6}\end{array}\right.$,可得A(6,1),
利用線性規(guī)劃可得x=6,y=1時,
此時該廠的日利潤最大為22萬元.
故答案為:22.

點評 本題考查線性規(guī)劃知識,考查利潤最大,解題的關(guān)鍵是確定線性約束條件及線性目標函數(shù).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,角A,B,C的對邊分別為a,b,c,且 $\frac{cosB}+\frac{cosC}{2a+c}$=0.
(Ⅰ)求角B的大小;
(Ⅱ)若b=$\sqrt{13}$,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)y=$\frac{sinxcosx}{1+sinx-cosx}$的值域為[$-\frac{\sqrt{2}+1}{2}$,-1)∪(-1,$\frac{\sqrt{2}-1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若sinα=-$\frac{5}{13}$,且α為第三象限角,則tanα的值等于( 。
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知全集U=R,集合A={x|y=lg(x-1)},B={y|y=$\sqrt{{x}^{2}+2x+5}$},則A∩(∁UB)=( 。
A.[1,2]B.[1,2)C.(1,2]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知雙曲線Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2c,直線l:y=kx-kc.若k=$\sqrt{3}$,則l與Γ的左、右兩支各有一個交點;若k=$\sqrt{15}$,則l與Γ的右支有兩個不同的交點,則Γ的離心率的取值范圍為( 。
A.(1,2)B.(1,4)C.(2,4)D.(4,16)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知△ABC的面積為1,點P滿足$3\overrightarrow{AB}+2\overrightarrow{BC}+\overrightarrow{CA}=4\overrightarrow{AP}$,則△PBC的面積等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知向量$\overrightarrow a=({1,3}),\overrightarrow b=({m,2}),\overrightarrow c=({3,4})$,且$({\overrightarrow a-3\overrightarrow b})⊥\overrightarrow c$
(1)求實數(shù)m的值;
(2)求向量$\overrightarrow a,\overrightarrow b$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設a,b都是不等于1的正數(shù),則“${log_a}^2<{log_b}^2$”是“2a>2b>2”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案