2.已知函數(shù)f(x)=(x-k)ex(k∈R).
(1)若k=0,求函數(shù)f(x)的極值;
(2)求函數(shù)g(x)在區(qū)間[0,1]上的最小值.

分析 (1)求導(dǎo),令導(dǎo)數(shù)等于零,解方程,跟據(jù)f′(x)f(x)隨x的變化情況即可求出函數(shù)的單調(diào)區(qū)間;
(2)根據(jù)(1),對k-1是否在區(qū)間[0,1]內(nèi)進行討論,從而求得f(x)在區(qū)間[0,1]上的最小值.

解答 解:(Ⅰ)k=0時:f′(x)=(x+1)ex
令f′(x)=0,得x=-1,
f′(x)f(x)隨x的變化情況如下:

x(-∞,-1)-1(-1,+∞)
 f′(x)-0+
  f(x)-e-1
∴f(x)的單調(diào)遞減區(qū)間是(-∞,-1),f(x)的單調(diào)遞增區(qū)間(-1,+∞);
∴f(x)極小值=f(-1)=-$\frac{1}{e}$;
(Ⅱ)f′(x)=(x-k+1)ex,
令f′(x)=0,得x=k-1,
f′(x)f(x)隨x的變化情況如下:
x(-∞,k-1)k-1(k-1,+∞)
 f′(x)-0+
  f(x)-ek-1
∴f(x)的單調(diào)遞減區(qū)間是(-∞,k-1),f(x)的單調(diào)遞增區(qū)間(k-1,+∞);
當(dāng)k-1≤0,即k≤1時,函數(shù)f(x)在區(qū)間[0,1]上單調(diào)遞增,
∴f(x)在區(qū)間[0,1]上的最小值為f(0)=-k;
當(dāng)0<k-1<1,即1<k<2時,由(I)知,f(x)在區(qū)間[0,k-1]上單調(diào)遞減,f(x)在區(qū)間(k-1,1]上單調(diào)遞增,
∴f(x)在區(qū)間[0,1]上的最小值為f(k-1)=-ek-1;
當(dāng)k-1≥1,即k≥2時,函數(shù)f(x)在區(qū)間[0,1]上單調(diào)遞減,
∴f(x)在區(qū)間[0,1]上的最小值為f(1)=(1-k)e;
綜上所述f(x)min=$\left\{\begin{array}{l}{-k,k≤1}\\{{-e}^{k-1},1<k<2}\\{(1-k)e,k≥2}\end{array}\right.$.

點評 此題是個中檔題.考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和在閉區(qū)間上的最值問題,對方程f'(x)=0根是否在區(qū)間[0,1]內(nèi)進行討論,體現(xiàn)了分類討論的思想方法,增加了題目的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.三個數(shù)成等差數(shù)列,其和是12,公差為3,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.(a3-$\frac{1}{2^{2}}$)8的展開式中所有項系數(shù)和是(  )
A.28B.$\frac{1}{{2}^{8}}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和是Sn,且2Sn+an=2(n∈N+).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3(1-Sn+1)(n∈N+),求$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=x3+ax,若f(2)=10,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.四位男演員與五位女演員(包含女演員甲)排成一排拍照,其中四位男演員互不相鄰,且女演員甲不站兩側(cè)的排法數(shù)為( 。
A.${A}_{5}^{5}$${A}_{6}^{4}$-2${A}_{4}^{4}$${A}_{5}^{4}$B.${A}_{5}^{5}$${A}_{4}^{4}$-${A}_{4}^{4}$${A}_{5}^{4}$
C.${A}_{6}^{5}$${A}_{5}^{4}$-2${A}_{4}^{4}$${A}_{4}^{4}$D.${A}_{5}^{5}$${A}_{5}^{4}$-${A}_{4}^{4}$${A}_{4}^{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,角A,B,C的對邊分別為a,b,c,若b=1,a=2c,則sinC的最大值為( 。
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=$\frac{{x}^{3}}{3}$-sin2x的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.命題“?x∈R,x2+2x+1≥0”的否定是( 。
A.?x∈R,x2+2x+1<0B.?x∉R,x2+2x+1<0C.?x∉R,x2+2x+1<0D.?x∈R,x2+2x+1<0

查看答案和解析>>

同步練習(xí)冊答案