【題目】設(shè)函數(shù) 其中R, …為自然對數(shù)的底數(shù)

)當(dāng)時(shí), 恒成立,求的取值范圍;

)求證: (參考數(shù)據(jù): )

【答案】1 2見解析

【解析】試題分析】1)先構(gòu)造函數(shù),再對其求導(dǎo)得到然后分兩種情形分類討論進(jìn)行分析求解:

2借助(1的結(jié)論,當(dāng)時(shí), 恒成立, 再令,得到 又由()知,當(dāng)時(shí),則遞減,在遞增,則,即,又,即,,即,則,

故有.

解:

()令,則

,則, , 遞增, ,

恒成立,滿足,所以;

遞增,

時(shí), ,則使,

遞減,在遞增,

所以當(dāng)時(shí),即當(dāng)時(shí), ,

不滿足題意,舍去;

綜合的取值范圍為.

()由()知,當(dāng)時(shí), 恒成立,

,則;

由()知,當(dāng)時(shí),則遞減,在遞增,

,即,又,即,

,即,則,

故有.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長為2的等邊三角形中,點(diǎn)分別是邊上的點(diǎn),滿足,(),將沿直線折到的位置.在翻折過程中,下列結(jié)論不成立的是(

A.在邊上存在點(diǎn),使得在翻折過程中,滿足平面

B.存在,使得在翻折過程中的某個(gè)位置,滿足平面平面

C.,當(dāng)二面角為直二面角時(shí),

D.在翻折過程中,四棱錐體積的最大值記為的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有人收集了七月份的日平均氣溫(攝氏度)與某次冷飲店日銷售額(百元)的有關(guān)數(shù)據(jù),為分析其關(guān)系,該店做了五次統(tǒng)計(jì),所得數(shù)據(jù)如下:

日平均氣溫(攝氏度)

31

32

33

34

35

日銷售額(百元)

5

6

7

8

10

由資料可知,關(guān)于的線性回歸方程是,給出下列說法:

;

②日銷售額(百元)與日平均氣溫(攝氏度)成正相關(guān);

③當(dāng)日平均氣溫為攝氏度時(shí),日銷售額一定為百元.

其中正確說法的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且橢圓過點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線交于、兩點(diǎn),點(diǎn)在橢圓上,是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為。我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用。已知,直線與橢圓有且只有一個(gè)公共點(diǎn).

(1)求的值;

(2)設(shè)為坐標(biāo)原點(diǎn),過橢圓上的兩點(diǎn)分別作該橢圓的兩條切線、,且交于點(diǎn)。當(dāng)變化時(shí),求面積的最大值;

(3)在(2)的條件下,經(jīng)過點(diǎn)作直線與該橢圓交于、兩點(diǎn),在線段上存在點(diǎn),使成立,試問:點(diǎn)是否在直線上,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為配合“2019雙十二促銷活動(dòng),某公司的四個(gè)商品派送點(diǎn)如圖環(huán)形分布,并且公司給四個(gè)派送點(diǎn)準(zhǔn)備某種商品各50個(gè).根據(jù)平臺數(shù)據(jù)中心統(tǒng)計(jì)發(fā)現(xiàn),需要將發(fā)送給四個(gè)派送點(diǎn)的商品數(shù)調(diào)整為40,45,54,61,但調(diào)整只能在相鄰派送點(diǎn)進(jìn)行,每次調(diào)動(dòng)可以調(diào)整1件商品.為完成調(diào)整,則(

A.最少需要16次調(diào)動(dòng),有2種可行方案

B.最少需要15次調(diào)動(dòng),有1種可行方案

C.最少需要16次調(diào)動(dòng),有1種可行方案

D.最少需要15次調(diào)動(dòng),有2種可行方案

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在改革開放40年成就展上某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)表:

年份

2014

2015

2016

2017

2018

2019

年份代碼

1

2

3

4

5

6

年產(chǎn)量(萬噸)

6.6

6.7

7

7.1

7.2

7.4

1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

2)根據(jù)線性回歸方程預(yù)測2020年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對于一組數(shù)據(jù),…,,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留到小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)在點(diǎn)處與軸相切

(1)求的值,并求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過正方體的頂點(diǎn)作平面,使得正方體的各棱與平面所成的角都相等,則滿足條件的平面的個(gè)數(shù)為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案