【題目】202011日《天津日?qǐng)?bào)》發(fā)表文章總結(jié)天津海河英才計(jì)劃成果厚植熱土 讓天下才天津用”——我市精細(xì)服務(wù)海河英才優(yōu)化引才結(jié)構(gòu).“海河英才行動(dòng)計(jì)劃,緊緊圍繞一基地三區(qū)定位,聚焦戰(zhàn)略性新興產(chǎn)業(yè)人才需求,大力、大膽集聚人才.政策實(shí)施1年半以來(lái),截至20191130日,累計(jì)引進(jìn)各類(lèi)人才落戶(hù)23.5萬(wàn)人.具體比例如圖所示,新引進(jìn)兩院院士,長(zhǎng)江學(xué)者,杰出青年科學(xué)基金獲得者等頂尖領(lǐng)軍人才112.記者李軍計(jì)劃從人才庫(kù)中隨機(jī)選取一部分英才進(jìn)行跟蹤調(diào)查采訪(fǎng).

1)李軍抽取了8人其中學(xué)歷型人才4人,技能型人才3人,資格型人才1人,周二和周五隨機(jī)進(jìn)行采訪(fǎng),每天4人(4人順序任意),周五采訪(fǎng)學(xué)歷型人才人數(shù)不超過(guò)2人的概率;

2)李軍抽取不同類(lèi)型的人才有不同的采訪(fǎng)補(bǔ)貼,學(xué)歷型人才500/人,技能型人才400/人,資格型人才600/人,則創(chuàng)業(yè)型急需型人才最少補(bǔ)貼多少元/人使每名人才平均采訪(fǎng)補(bǔ)貼費(fèi)用大于等于500/人?

【答案】1;(2/

【解析】

1)利用組合數(shù)以及古典概型的概率計(jì)算公式即可求解.

2)設(shè)創(chuàng)業(yè)型急需型人才最少補(bǔ)貼/人,列出分布列,求出數(shù)學(xué)期望,使解不等式即可求解.

1)事件周五采訪(fǎng)學(xué)歷型人才人數(shù)不超過(guò)2的概率

2)各類(lèi)人才的補(bǔ)貼數(shù)額為隨機(jī)變量

取值分別為400、500、600分布列為:

400

500

600

25.5%

53.6%

19.1%

1.8%

,解為,

所以創(chuàng)業(yè)型急需型人才最少補(bǔ)貼/人,

才能使每名人才平均采訪(fǎng)補(bǔ)貼費(fèi)用大于等于500/

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方、塹堵、陽(yáng)馬、鱉臑這些名詞出自中國(guó)古代數(shù)學(xué)名著《九章算術(shù)商功》.其中陽(yáng)馬和鱉臑是我國(guó)古代對(duì)一些特殊錐體的稱(chēng)呼.取一長(zhǎng)方,如圖長(zhǎng)方體ABCDA1B1C1D1,按平面ABC1D1斜切一分為二,得到兩個(gè)一模一樣的三棱柱.稱(chēng)該三梭柱為塹堵,再沿塹堵的一頂點(diǎn)與相對(duì)的棱剖開(kāi),得四棱錐和三棱錐各一個(gè),其中以矩形為底另有一棱與底面垂直的四梭錐D1ABCD稱(chēng)為陽(yáng)馬,余下的三棱錐D1BCC1是由四個(gè)直角三角形組成的四面體稱(chēng)為鱉臑.已知長(zhǎng)方體ABCDA1B1C1D1中,AB5,BC4AA13,按以上操作得到陽(yáng)馬.則該陽(yáng)馬的最長(zhǎng)棱長(zhǎng)為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線(xiàn),某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉(cāng)庫(kù),設(shè),并在公路北側(cè)建造邊長(zhǎng)為的正方形無(wú)頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉(cāng)庫(kù)A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.

(1)求關(guān)于的函數(shù)解析式,并求出定義域;

(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬(wàn)元/km,兩條道路造價(jià)為30萬(wàn)元/km,問(wèn):取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動(dòng)弦,直線(xiàn)軸交于點(diǎn),直線(xiàn)與直線(xiàn)的交點(diǎn)為.

1)證明:點(diǎn)恒在橢圓.

2)設(shè)直線(xiàn)與橢圓只有一個(gè)公共點(diǎn),直線(xiàn)與直線(xiàn)相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

1)求的取值范圍;

2)設(shè)兩個(gè)極值點(diǎn)分別為:,,證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn)為正常數(shù)),軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,且線(xiàn)段的中點(diǎn)在軸上.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)設(shè)為曲線(xiàn)的一條動(dòng)弦(不垂直于軸).其垂直平分線(xiàn)與軸交于點(diǎn).當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,側(cè)面BB1C1C為菱形,

1)求證:B1CAB;

2)若∠CBB160°,ACBC,且點(diǎn)A在側(cè)面BB1C1C上的投影為點(diǎn)O,求二面角BAA1C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,P,Q,M,N,H,R是各條棱的中點(diǎn).

①直線(xiàn)平面;②;③PQ,H,R四點(diǎn)共面;④平面.其中正確的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)都是定義在上的單調(diào)減函數(shù),且,若對(duì)于任意,存在,,使得成立,則稱(chēng)上的被追逐函數(shù),若,下述四個(gè)結(jié)論中正確的是(

上的被追逐函數(shù);

②若和函數(shù)關(guān)于軸對(duì)稱(chēng),則上的被追逐函數(shù);

③若上的被追逐函數(shù),則;

④存在,使得上的被追逐函數(shù)”.

A.①③④B.①②④C.②③D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案