【題目】如圖,在三棱柱ABCA1B1C1中,側(cè)面BB1C1C為菱形,

1)求證:B1CAB;

2)若∠CBB160°,ACBC,且點(diǎn)A在側(cè)面BB1C1C上的投影為點(diǎn)O,求二面角BAA1C的余弦值.

【答案】(1)詳見解析;(2)

【解析】

(1)由側(cè)面BB1C1C為菱形,得B1CBO,再由ACAB1OB1C的中點(diǎn),得B1CAO,利用直線與平面垂直的判定可得B1C⊥平面ABO,從而得到B1CAB;

(2)點(diǎn)A在側(cè)面BB1C1C上的投影為點(diǎn)O,即AO⊥平面BB1C1C,由(1)知OBOB1,以O為坐標(biāo)原點(diǎn),分別以OB,OB1,OA所在直線為x,y,z軸建立空間直角坐標(biāo)系.分別求出平面BAA1 的一個(gè)法向量與平面ACA1的一個(gè)法向量,由兩法向量所成角的余弦值可得二面角BAA1C的余弦值.

(1)證明:∵側(cè)面BB1C1C為菱形,∴B1CBO,又ACAB1,OB1C的中點(diǎn),∴B1CAO,

AOBOO,∴B1C⊥平面ABO,得B1CAB;

(2)解:∵點(diǎn)A在側(cè)面BB1C1C上的投影為點(diǎn)O,即AO⊥平面BB1C1C,又由(1)知OBOB1,

∴以O為坐標(biāo)原點(diǎn),分別以OB,OB1OA所在直線為x,y,z軸建立空間直角坐標(biāo)系.

∵∠CBB160°,ACBC

設(shè)BC2a,則,,

,,

設(shè)平面BAA1 的一個(gè)法向量為,

,取z11,得;

設(shè)平面ACA1的一個(gè)法向量為,

,取,得

.由圖可知,二面角BAA1C為銳角,

∴二面角BAA1C的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)上的單調(diào)性;

(Ⅱ)判斷當(dāng)時(shí),的圖象公切線的條數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在衡陽市創(chuàng)全國文明城市(簡稱創(chuàng)文)活動(dòng)中,市教育局對(duì)本市AB,C,D四所高中學(xué)校按各校人數(shù)分層抽樣,隨機(jī)抽查了200人,將調(diào)查情況進(jìn)行整理后制成下表:

學(xué)校

A

B

C

D

抽查人數(shù)

10

15

100

75

創(chuàng)文活動(dòng)中參與的人數(shù)

9

10

80

49

假設(shè)每名高中學(xué)生是否參與創(chuàng)文活動(dòng)是相互獨(dú)立的

1)若本市共8000名高中學(xué)生,估計(jì)C學(xué)校參與創(chuàng)文活動(dòng)的人數(shù);

2)在上表中從A,B兩校沒有參與創(chuàng)文活動(dòng)的同學(xué)中隨機(jī)抽取2人,求恰好A,B兩校各有1人沒有參與創(chuàng)文活動(dòng)的概率;

3)在隨機(jī)抽查的200名高中學(xué)生中,進(jìn)行文明素養(yǎng)綜合素質(zhì)測(cè)評(píng)(滿分為100分),得到如上的頻率分布直方圖,其中.求a,b的值,并估計(jì)參與測(cè)評(píng)的學(xué)生得分的中位數(shù).(計(jì)算結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】202011日《天津日?qǐng)?bào)》發(fā)表文章總結(jié)天津海河英才計(jì)劃成果厚植熱土 讓天下才天津用”——我市精細(xì)服務(wù)海河英才優(yōu)化引才結(jié)構(gòu).“海河英才行動(dòng)計(jì)劃,緊緊圍繞一基地三區(qū)定位,聚焦戰(zhàn)略性新興產(chǎn)業(yè)人才需求,大力、大膽集聚人才.政策實(shí)施1年半以來,截至20191130日,累計(jì)引進(jìn)各類人才落戶23.5萬人.具體比例如圖所示,新引進(jìn)兩院院士,長江學(xué)者,杰出青年科學(xué)基金獲得者等頂尖領(lǐng)軍人才112.記者李軍計(jì)劃從人才庫中隨機(jī)選取一部分英才進(jìn)行跟蹤調(diào)查采訪.

1)李軍抽取了8人其中學(xué)歷型人才4人,技能型人才3人,資格型人才1人,周二和周五隨機(jī)進(jìn)行采訪,每天4人(4人順序任意),周五采訪學(xué)歷型人才人數(shù)不超過2人的概率;

2)李軍抽取不同類型的人才有不同的采訪補(bǔ)貼,學(xué)歷型人才500/人,技能型人才400/人,資格型人才600/人,則創(chuàng)業(yè)型急需型人才最少補(bǔ)貼多少元/人使每名人才平均采訪補(bǔ)貼費(fèi)用大于等于500/人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABCA1B1C1中,E是棱AB的中點(diǎn),動(dòng)點(diǎn)F是側(cè)面ACC1A1(包括邊界)上一點(diǎn),若EF//平面BCC1B1,則動(dòng)點(diǎn)F的軌跡是(

A.線段B.圓弧

C.橢圓的一部分D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|x+1||2x2|的最大值為M,正實(shí)數(shù)ab滿足a+bM

1)求2a2+b2的最小值;

2)求證:aabbab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,P,QM,N,H,R是各條棱的中點(diǎn).

①直線平面;②;③PQ,H,R四點(diǎn)共面;④平面.其中正確的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且的圖象有一條斜率為1的公切線(e為自然對(duì)數(shù)的底數(shù)).

1)求;

2)設(shè)函數(shù),證明:當(dāng)時(shí),有且僅有2個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐的側(cè)棱和底面邊長相等,在這個(gè)正四棱錐的條棱中任取兩條,按下列方式定義隨機(jī)變量的值:

若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大。ɑ《戎疲;

若這兩條棱所在的直線平行,則

若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).

(1)求的值;

(2)求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案