18.向量的運算常常與實數(shù)運算進行類比,下列類比推理中結(jié)論正確的是(  )
A.“若ac=bc(c≠0),則a=b”類比推出“若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$($\overrightarrow{c}$≠$\overrightarrow{0}$),則$\overrightarrow{a}$=$\overrightarrow$”
B.“在實數(shù)中有(a+b)c=ac+bc”類比推出“在向量中($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”
C.“在實數(shù)中有(ab)c=a(bc)”類比推出“在向量中($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)”
D.“若ab=0,則a=0或b=0”類比推出“若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$”

分析 對四個選項,利用向量的數(shù)量積的定義與性質(zhì),分別進行判斷,即可得出結(jié)論.

解答 解:由條件,得出($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{c}$=0,
∴($\overrightarrow{a}$-$\overrightarrow$)與$\overrightarrow{c}$垂直,則$\overrightarrow{a}$=$\overrightarrow$,不一定成立,故A不正確;
向量的乘法滿足分配律,故B正確;
在向量中($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$與$\overrightarrow{c}$共線,$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)與$\overrightarrow{a}$共線,故C不正確;
若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$⊥$\overrightarrow$,$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$不一定成立,故D不正確.
故選:B.

點評 類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若sinxcosy+cosxsiny=$\frac{1}{2}$,cos2x-cos2y=$\frac{2}{3}$,則sin(x-y)=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.閱讀如圖所示的程序框圖,則輸出S的值為22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題p:?x<1,都有l(wèi)og${\;}_{\frac{1}{2}}}$x<0,命題q:?x∈R,使得x2≥2x成立,則下列命題是真命題的是( 。
A.p∨(¬q)B.(¬p)∨(¬q)C.p∨qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知x、y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y-4≤0\\{({x-2})^2}+{y^2}≤4\end{array}\right.$,則z=-$\frac{{\sqrt{3}}}{3}$x+y的范圍為$[{-2\sqrt{3},2-\frac{{2\sqrt{3}}}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知球O的半徑為2,圓M和圓N是球的互相垂直的兩個截面,圓M和圓N的面積分別為2π和π,則|MN|=( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.一袋子中有10個大小相同標(biāo)有數(shù)字的小球,其中4個小球標(biāo)有數(shù)字1,3個小球標(biāo)有數(shù)字2,2個小球標(biāo)有數(shù)字3,1個小球標(biāo)有數(shù)字4.從袋子中任取3個小球.
(Ⅰ)求所取的3個小球中所標(biāo)有數(shù)字恰有兩個相同的概率;
(Ⅱ)X表示所取的3個小球所標(biāo)數(shù)字的最大值,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題“?x0∈R,$\sqrt{{3^{x_0}}+1}$≤1”的否定為( 。
A.?x0∈R,$\sqrt{{3^{x_0}}+1}$>1B.?x0∈R,$\sqrt{{3^{x_0}}+1}$≥1C.?x∈R,$\sqrt{{3^{x_0}}+1}$>1D.?x∈R,$\sqrt{{3^{x_0}}+1}$<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}x=\sqrt{3}+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)),在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4.
(Ⅰ)求出曲線C2的直角坐標(biāo)方程;
(Ⅱ)若C1與C2相交于A,B兩點,求線段AB的長.

查看答案和解析>>

同步練習(xí)冊答案