如下圖,在四邊形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,求BC的長.

思路分析:先在△ABD中求BD,然后在△BCD中求BC.

解:在△ABD中,由余弦定理得

BA2=BD2+AD2-2BD·AD·cos∠BDA.

設(shè)BD=x,則142=x2+102-2·10·xcos60°,即x2-10x-96=0,

∴x1=16,x2=-6(舍去).

在△BCD中,由正弦定理得

=.

∴BC=·sin 30°=8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:重難點(diǎn)手冊 高中數(shù)學(xué)·必修4(配人教A版新課標(biāo)) 人教A版新課標(biāo) 題型:047

如下圖,在四邊形ABCD中,已知E、F分別為AB、CD的中點(diǎn),求證:EF=(AD+BC).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0127 模擬題 題型:解答題

如下圖,在四邊形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,求BC的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如下圖,平行四邊形ABCD中,點(diǎn)M是AB的中點(diǎn),點(diǎn)N在BD上,且BN=BD,求證:M、N、C三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如下圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=,求AB的長.

查看答案和解析>>

同步練習(xí)冊答案