如下圖,在四邊形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,求BC的長(zhǎng)。
解:在△ABD中,由余弦定理有

設(shè)
則有

(舍去)
即BD=16
在△DBC中,,,BD=16
由正弦定理可得
。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:重難點(diǎn)手冊(cè) 高中數(shù)學(xué)·必修4(配人教A版新課標(biāo)) 人教A版新課標(biāo) 題型:047

如下圖,在四邊形ABCD中,已知E、F分別為AB、CD的中點(diǎn),求證:EF=(AD+BC).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如下圖,平行四邊形ABCD中,點(diǎn)M是AB的中點(diǎn),點(diǎn)N在BD上,且BN=BD,求證:M、N、C三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如下圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如下圖,在四邊形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案