【題目】某校高二年級學(xué)生會有理科生4名,其中3名男同學(xué);文科生3名,其中有1名男同學(xué).從這7名成員中隨機(jī)抽4人參加高中示范校驗收活動問卷調(diào)查.

(Ⅰ)設(shè)為事件“選出的4人中既有文科生又有理科生”,求事件的概率;

(Ⅱ)設(shè)為選出的4人中男生人數(shù)與女生人數(shù)差的絕對值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

【答案】(1)(2)

【解析】

試題(Ⅰ)根據(jù)古典概型結(jié)合排列組合知識求出所選四人全部是理科的概率,再根據(jù)對立事件的概率公式求解;(Ⅱ)隨機(jī)變量的所有可能值為 ,利用古典概型概率公式,分別求出對應(yīng)概率,進(jìn)而得分布列,根據(jù)期望公式可得結(jié)果.

試題解析:(Ⅰ),故事件發(fā)生的概率為.

(Ⅱ)隨機(jī)變量的所有可能值為0,2,4.

所以隨機(jī)變量的分布列為

0

2

4

隨機(jī)變量的數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

1)求關(guān)于的函數(shù)關(guān)系式;

2)已知在花壇的邊緣(實線部分)進(jìn)行裝飾時,直線部分的裝飾費用為4/米,弧線部分的裝飾費用為9/米.設(shè)花壇的面積與裝飾總費用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時, 取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周脾算經(jīng)》有記載:一年有二十四個節(jié)氣,每個節(jié)氣晷(gui)長損益相同,晷是按照日影測定時刻的儀器,晷長即所測定的影子的長度,二十四節(jié)氣及晷長變化如圖所示,相鄰兩個節(jié)氣晷長變化量相同,周而復(fù)始,若冬至晷長最長是一丈三尺五寸,夏至晷長最短是一尺五寸,(一丈等于10尺,一尺等于10寸),則秋分節(jié)氣的晷長是(

A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱的底面是正三角形,側(cè)面為菱形,且,平面平面,、分別是的中點.

1)求證:平面;

2)求證:;

3)求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,直線l過點

若直線l被圓所截得的弦長為,求直線l的方程;

若圓P是以為直徑的圓,求圓P與圓的公共弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

的單調(diào)區(qū)間和極值;

當(dāng)時,若,且,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓軸相切于點(0,3),圓心在經(jīng)過點(2,1)與點(﹣2,﹣3)的直線上.

(1)求圓的方程;

(2)圓與圓相交于M、N兩點,求兩圓的公共弦MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

)當(dāng)時,判斷在定義域上的單調(diào)性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知函數(shù),函數(shù)的導(dǎo)函數(shù)為.

①求函數(shù)的定義域;

②求函數(shù)的零點個數(shù).

(2)給出如下定義:如果是曲線和曲線的公共點,并且曲線在點處的切線與曲線在點處的切線重合,則稱曲線與曲線在點處相切,點叫曲線和曲線的一個切點.試判斷曲線與曲線是否在某點處相切?若是,求出所有切點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案